1-14 of 14 Search Results for

Radiant pipes

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001714
EISBN: 978-1-62708-232-7
... Abstract In a HyL III heat exchanger's radiant pipes, metal dusting reduced the pipe thickness from 8.5 to 3 mm in just nine months, leaving craters on the inner surface. The pipes are fabricated from HK 40 alloy. The heated gas (400 to 800 deg C) consisted of CO, CO2, and H2, with a 4:1 CO/CO2...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0060154
EISBN: 978-1-62708-234-1
... Abstract One of the coils in the radiant section of a primary reformer furnace used in an ammonia plant was found leaking. The bottom of one of seven outlet headers (made of ASME SA-452, grade TP316H, stainless steel) was revealed during examination to be ruptured. It was revealed...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001328
EISBN: 978-1-62708-215-0
... consists of two parallel cells, each fired on both side walls and containing two staggered rows of vertical tubes. In the radiant section, tube skin temperature of about 850 °C (1562 °F) is maintained by multi-sidewall radiant burners mounted in vertical tiers of horizontal rows. An induced draft fan...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001771
EISBN: 978-1-62708-241-9
... Abstract Radiant tubes that failed prematurely in an ethylene cracking furnace were analyzed to determine the cause of their early demise. The tubes were made from austenitic heat-resistant steel and cracked along their longitudinal axis. New and used tubes were compared using scanning electron...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006804
EISBN: 978-1-62708-329-4
... that was burning (from the process information contained in the piping and instrumentation diagrams or other sources) can sometimes be determined by locating which vessel, pipe, or equipment is breached and what is normally contained in it. One can estimate the heat of the flame through radiant heat colors ( Ref 5...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001826
EISBN: 978-1-62708-241-9
..., radiant, natural circulation, non-reheat, pressurized furnace, outdoor, boiler El Paso type (RBE) Design pressure 101.7 barg Main steam flow TSH outlet (evaporating capability) 109.7 kg/s; 394,920 kg/h Steam temperature TSH outlet (from 50% MCR up to MCR) 525 °C Steam pressure TSH outlet...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... Abstract This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... as necessary on an annual basis. Example 4: Creep Failure of a 2.25Cr-1Mo Steel Superheater Tube This example concerns a creep failure taken from a radiant superheater. There have been no reported creep failures in nearly 17 years of service. The boiler is coal fired. Operating drum pressure is 18 MPa...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... cracks are potential sources of failure because, although frequently small, they usually exist at the end of the weld where stress concentration is greatest. Their occurrence may be minimized by pausing before breaking the arc, by breaking and restarting the arc several times to feed the shrinkage pipe...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... assessment stress relaxation time-dependent stress analysis ELEVATED-TEMPERATURE LIFE ASSESSMENT METHODS are discussed in the article “ Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing ” in the 2002 edition of Failure Analysis and Prevention , Volume 11 of ASM Handbook...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... a three-roll stack, located as close to the die lip as practical ( Fig. 13 ). The rotating drums typically have coolant circulating through them to maintain a constant temperature and prevent excessive radiant heating from the die. After being pulled through the three-roll stack, the film passes through...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2