1-20 of 444

Search Results for Quenching

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 15 Deformation of medium-carbon and hardenable steel bars by quenching from below and above the transformation temperature and by stress relieving. l c , change of length; WQ, water quench; OQ, oil quench. (a) to (c) JIS S38C steel (0.38% C). (d) to (f) JIS SNCM 439 steel (0.39% C, 1.8 More
Image
Published: 01 January 2002
Fig. 16 Stress distribution in a cylinder after quenching More
Image
Published: 01 January 2002
Fig. 24 Die quenching system. Courtesy of Gleason Tooling Products Group More
Image
Published: 01 January 2002
Fig. 29 Distortion often encountered when quenching a notch More
Image
Published: 01 January 2002
Fig. 77 Direct quenching from carburizing temperature. (a) Phase diagram schematic. (b) Continuous cooling transformation curve for a high-carbon surface. (c) Micrograph of direct quenched 3% Ni-Cr carburized steel. 280×. Source: Ref 30 More
Image
Published: 01 January 2002
Fig. 2(a) Front view of an AISI O1 tool steel die that cracked during oil quenching. The die face contains holes that are too close to the edge for safe quenching. See also Fig. 2(b) . 0.6× More
Image
Published: 01 January 2002
Fig. 3 AISI O1 tool steel die that cracked during oil quenching. Note the cracks emanating from the sharp corners. The four holes, which are close to the edge, also contributed to cracking. Temper color was observed on the crack walls. More
Image
Published: 01 January 2002
Fig. 4 Fixture made from AISI O1 tool steel that cracked during oil quenching. This design is poor for liquid quenching. A nick in the fillet region helped to initiate cracking. 0.75× More
Image
Published: 01 January 2002
Fig. 5 Threaded part made from AISI W2 tool steel that cracked during quenching at an undercut at the base of the threads. (a) The two pieces that separated during fracture. (b) Cold-etched (10% aqueous nitric acid) disk cut through the threaded portion showing the hardened surface zone, which More
Image
Published: 01 January 2002
Fig. 6 Punch made of AISI S7 tool steel that cracked during quenching. Temper color was observed on the crack walls. Cracking was promoted by and located by the very coarse machining marks. Magnetic particles have been used to emphasize the cracks. 0.5× More
Image
Published: 01 January 2002
Fig. 15 AISI W2 carbon tool steel (1.05% C) component that cracked during quenching due to the presence of soft spots (arrows) on the surface. These soft spots were revealed by cold etching the surface with 10% aqueous nitric acid. 0.4× More
Image
Published: 01 January 2002
Fig. 16(a) AISI O1 tool steel ring forging that cracked during quenching. The forging was overaustenitized (unstable retained austenite was present) and was decarburized to a depth of about 0.5 mm (0.020 in.). Temper color was present on the crack walls. See also Fig. 16(b) . More
Image
Published: 01 January 2002
Fig. 29 Failure caused by improper quenching. (a) AISI W1 tool steel wire-forming die that broke prematurely during service. (b) Cold etching (10% aqueous nitric acid) of a disk cut behind the fracture revealed that the bore-working surface was not hardened; only the dull gray region More
Image
Published: 01 January 2002
Fig. 5 Quenching from too high a temperature cracked this manganese oil-hardening steel die ( Fig. 4 pictures its microstructure). Some of the cracks which are exaggerated by magnetic powder probably are secondary and developed because the structure is particularly sensitive to grinding. More
Image
Published: 01 January 2002
Fig. 6 Nonuniform, low quenching temperatures can cause bald-head fractures in carbon-tool steel dies. More
Image
Published: 01 June 2019
Fig. 1 Microstructure of component that cracked during quenching. Phase transformation from γ to α′ martensite was incomplete and indicative of cooling rate <50°C. More
Image
Published: 30 August 2021
Fig. 3 AISI O1 tool steel die that cracked during oil quenching. Note the cracks emanating from the sharp corners. The four holes, which are close to the edge, also contributed to cracking. Temper color was observed on the crack walls. More
Image
Published: 30 August 2021
Fig. 4 Fixture made from AISI O1 tool steel that cracked during oil quenching. This design is poor for liquid quenching. A nick in the fillet region helped to initiate cracking. Original magnification: 0.75× More
Image
Published: 30 August 2021
Fig. 5 Threaded part made from AISI W2 tool steel that cracked during quenching at an undercuzt at the base of the threads. (a) The two pieces that separated during fracture. (b) Cold-etched (10% aqueous nitric acid) disk cut through the threaded portion showing the hardened surface zone More
Image
Published: 30 August 2021
Fig. 6 Punch made of AISI S7 tool steel that cracked during quenching. Temper color was observed on the crack walls. Cracking was promoted by and located by the very coarse machining marks. Magnetic particles have been used to emphasize the cracks. Original magnification: 0.5× More