Skip Nav Destination
Close Modal
Search Results for
Pumping plants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 80
Search Results for Pumping plants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001085
EISBN: 978-1-62708-214-3
... Abstract Liquid penetrant inspection of an ASTM A296 grade CA-15 residual heat removal pump impeller from a nuclear plant revealed a crack like indication that approximated the outer contour of the wear ring. Examination of a section containing the crack and three sections from near the main...
Abstract
Liquid penetrant inspection of an ASTM A296 grade CA-15 residual heat removal pump impeller from a nuclear plant revealed a crack like indication that approximated the outer contour of the wear ring. Examination of a section containing the crack and three sections from near the main crack indication revealed that the failure was caused by hot cracking related to original weld repairs performed on the impeller casting.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001087
EISBN: 978-1-62708-214-3
... Abstract The repeated failure of rubber-covered rotors and volute liners in a flue gas desulfurization system after conversion from lime slurry reagent to limestone slurry reagent was investigated. The pump was a horizontal 50 x 65 mm (2 x 2.5 in.) Galiger pump with a split cast iron case...
Abstract
The repeated failure of rubber-covered rotors and volute liners in a flue gas desulfurization system after conversion from lime slurry reagent to limestone slurry reagent was investigated. The pump was a horizontal 50 x 65 mm (2 x 2.5 in.) Galiger pump with a split cast iron case and open rotor (impeller). Both the case and the ductile iron rotor core were covered by natural rubber. Analyses conducted included surface examination of wear patterns, chemical analysis of materials, measurement of mechanical properties, and in-place flow tests. It was determined that the proximate cause of failure was cavitation and vortexing between the rotor and the lining. The root cause of the failure was the conversion from lime to limestone slurry without appropriate modification of the pump. Conversion to the limestone slurry resulted in fluid dynamics outside the operational limits of the pump. The recommended remedial action was replacement with a pump appropriately sized for the desired pressures and flow rates for limestone slurry.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001372
EISBN: 978-1-62708-215-0
... microstructure susceptible to corrosion. The crack initiated either by stress-corrosion or hydrogen cracking. It was recommended that the couplings in the system be examined for surface cracking and, if present, corrective measures be taken. Cleavage Intergranular fracture Pumping plants Transgranular...
Abstract
A coupling in a line-shaft vertical turbine pump installed in a dam foundation fractured after a very short time. The coupling material was ASTM A582 416 martensitic stainless steel. Visual, macrofractographic, and scanning electron microscopic examination of the coupling showed that the fracture was brittle and was initiated by an intergranular cracking mechanism. The mode of fracture outside the crack initiation zone was transgranular cleavage. No indication of fatigue was found. The failure was attributed to improper heat treatment during manufacture, which resulted in a brittle microstructure susceptible to corrosion. The crack initiated either by stress-corrosion or hydrogen cracking. It was recommended that the couplings in the system be examined for surface cracking and, if present, corrective measures be taken.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046378
EISBN: 978-1-62708-234-1
... Abstract River water was pumped into a brine plant by a battery of vertical pumps, each operating at 3600 rpm and at a discharge pressure of 827 kPa (120 psi). The pumps were lubricated by means of controlled leakage. The 3.8 cm (1 in.) OD pump sleeves were made of an austenitic stainless steel...
Abstract
River water was pumped into a brine plant by a battery of vertical pumps, each operating at 3600 rpm and at a discharge pressure of 827 kPa (120 psi). The pumps were lubricated by means of controlled leakage. The 3.8 cm (1 in.) OD pump sleeves were made of an austenitic stainless steel and were hard faced with a fused nickel-base hardfacing alloy (approximately 58 HRC). Packing for the pumps consisted of a braided PTFE-asbestos material. After several weeks of operation, the pumps began to leak and to spray water over the platforms on which they were mounted at the edge of the river. Analysis supported the conclusions that the leaks were caused by excessive sleeve wear that resulted from the presence of fine, abrasive silt in the river water. The silt, which contained hard particles of silica, could not be filtered out of the inlet water effectively.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001779
EISBN: 978-1-62708-241-9
... Abstract Material samples collected from failed booster pumps were analyzed to determine the cause of failure and assess the adequacy of the materials used in the design. The pumps had been in service at a power plant, transporting feedwater from a deaerator to a main turbine boiler. Samples...
Abstract
Material samples collected from failed booster pumps were analyzed to determine the cause of failure and assess the adequacy of the materials used in the design. The pumps had been in service at a power plant, transporting feedwater from a deaerator to a main turbine boiler. Samples from critical areas of the pump were examined using optical and scanning electron microscopy, electrochemical analysis, and tensile testing. Based on microstructure and morphology, estimated corrosion rates, and particle concentrations in the feedwater, it was concluded that cavitation and erosion were the dominant failure mechanisms and that the materials and processes used to make the pumps were largely unsuited for the application.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001536
EISBN: 978-1-62708-229-7
... cracking (IGSCC) Nuclear power plants Nuclear reactor coolant piping Nuclear Pump seal wear rings Pump shaft cracking Stress corrosion cracking 304 UNS S30400 Cemented carbide Stress-corrosion cracking Dealloying/selective leaching 1. Introduction Approximately 113 nuclear electrical...
Abstract
Argonne National Laboratory has conducted analyses of failed components from nuclear power-generating stations since 1974. The considerations involved in working with and analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (1) intergranular stress-corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001394
EISBN: 978-1-62708-234-1
... Abstract A 1-in. diam pump spindle fractured within the length covered by the boss of the impeller which was attached to the spindle by means of an axial screw. The pump had been in use in a chemical plant handling mixtures of organic liquids and dilute sulfuric acid having a pH value of 2 to 4...
Abstract
A 1-in. diam pump spindle fractured within the length covered by the boss of the impeller which was attached to the spindle by means of an axial screw. The pump had been in use in a chemical plant handling mixtures of organic liquids and dilute sulfuric acid having a pH value of 2 to 4 at temperatures of 80 to 90 deg C (176 to 194 deg F). The fracture was unusual in that it was of a fibrous nature, the fibers-which were orientated radially-were readily detachable. The surface of the spindle adjacent to the fracture had an etched appearance and the mode of cracking in this region suggested that failure resulted from an intergranular attack. Subsequent microscope examination confirmed the generally intergranular mode of failure. A macro-etched section near the fracture revealed a radial arrangement of columnar crystals, indicating that the spindle was a cast and not a wrought product as had been presumed. Spectroscope examination showed this particular composition (Fe-23Cr-18Ni-1.8Mo-1.2Si) did not conform to a standard specification and is apparently a proprietary alloy. It was evident that the particular mode of failure was related to the inherent structure of the material.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001578
EISBN: 978-1-62708-233-4
... height prevented the excitation of the window, and these combined actions solved both the noise and vibration issues. Part II—Turbines, Pumps, and Compressors Case #1: High Vibration on a High Pressure Core Injection Pump at a Nuclear Plant Operators of nuclear power plants are required...
Abstract
Vibration analysis can be used in solving both rotating and nonrotating equipment problems. This paper presents case histories that, over a span of approximately 25 years, used vibration analysis to troubleshoot a wide range of problems.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001065
EISBN: 978-1-62708-214-3
... Abstract A 460 mm (18 in.) diam suction line to the main feed water pump for a nuclear power plant failed in a violent, catastrophic manner. Samples of pipe, elbow, and weld materials (ASTM A106 grade B carbon steel, ASTM A234 grade WPB carbon steel, and E7018 carbon steel electrode...
Abstract
A 460 mm (18 in.) diam suction line to the main feed water pump for a nuclear power plant failed in a violent, catastrophic manner. Samples of pipe, elbow, and weld materials (ASTM A106 grade B carbon steel, ASTM A234 grade WPB carbon steel, and E7018 carbon steel electrode, respectively) from the suction line were analyzed. Evidence of overall thinning of the elbow and pipe material and ductile tearing of fractures indicated that the feed water pipe failed as a result of an erosion corrosion mechanism, which thinned the wall sufficiently to cause rapid, ductile tearing of the material after its design stress had been exceeded. It was recommended that steel with a higher chromium content be used to mitigate the erosion corrosion potential in the lines and that more rigorous nondestructive (ultrasonic) examinations be performed.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001084
EISBN: 978-1-62708-214-3
... Abstract Failure analysis was performed on a fractured impeller from a boiler feed pump of a fossil fuel power plant. The impeller was a 12% Cr martensitic stainless steel casting. The failure occurred near the outside diameter of the shroud in the vicinity of a section change at the shroud...
Abstract
Failure analysis was performed on a fractured impeller from a boiler feed pump of a fossil fuel power plant. The impeller was a 12% Cr martensitic stainless steel casting. The failure occurred near the outside diameter of the shroud in the vicinity of a section change at the shroud/vane junction. Sections cut from the impeller were examined visually and by SEM fractography. Microstructural, chemical, and surface analyses and surface hardness tests were conducted on the impeller segments. The results indicated that the impeller failed in fatigue with casting defects increasing stress and initiating fracture. In addition, the composition and hardness of the impeller did not meet specifications. Revision of the casting process and institution of quality assurance methods were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001371
EISBN: 978-1-62708-215-0
... Abstract A type 410 stainless steel circulating water pump shaft used in a fossil power steam generation plant failed after more than 7 years of service. Visual examination showed the fracture surface to be coated with a thick, spalling, rust-colored scale, along with evidence of pitting...
Abstract
A type 410 stainless steel circulating water pump shaft used in a fossil power steam generation plant failed after more than 7 years of service. Visual examination showed the fracture surface to be coated with a thick, spalling, rust-colored scale, along with evidence of pitting. Samples for SEM fractography, EDS analysis, and metallography were taken at the crack initiation site. Hardness testing produced a value of approximately 27 HRC. The examinations clearly established that the shaft failed by fatigue. The fatigue crack originated at a localized region on the outside surface where pitting and intergranular cracking had occurred. The localized nature of the initial damage indicated that a corrosive medium had concentrated on the surface, probably due to a leaky seal. Reduction of hardness to 22 HRC or lower and inspection of seals were recommended to prevent future failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001399
EISBN: 978-1-62708-220-4
... Abstract An air compressor was installed at a chemical plant in which nitric acid was produced by burning ammonia with air. It was a 5000 hp, 5-stage centrifugal machine running at 6000 rpm, compressing air to 5 atm. Failure of the first stage impeller occurred due to a segment from the back...
Abstract
An air compressor was installed at a chemical plant in which nitric acid was produced by burning ammonia with air. It was a 5000 hp, 5-stage centrifugal machine running at 6000 rpm, compressing air to 5 atm. Failure of the first stage impeller occurred due to a segment from the back plate becoming detached. On the remaining portion, cracks were visible running between the holes for rivets by which the vanes were attached. Metallographic examination of selected sections from the backplate revealed the material to be in the hardened and tempered condition, and the cracking to have initiated on the internal surface of the plate at the crevice between the plate and the vane. It was evident that the impeller failed by stress-corrosion cracking, which initiated in the crevice between the vanes and back plate and propagated through the plate along the line of the rivets where working stresses would be greatest. The compressor intake was situated in the vicinity of nitric acid pumps which had a history of leakage troubles, and which had evidently given rise to the nitrates found on the impeller.
Image
in Failure of a Hard-Faced Stainless Steel Pump Sleeve Because of Abrasive Wear by River-Water Silt
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 1 Hard-faced austenitic stainless steel pump sleeve used to pump river water to a brine plant. The sleeve at left, coated with a fused nickel-base hard-facing alloy, shows severe abrasive wear by river-water silt after 3387 h of service. Sleeve at right, coated with plasma-deposited
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001334
EISBN: 978-1-62708-215-0
... Abstract Leaks developed at random locations in aluminum brass condenser tubes within the first year of operation of a steam condenser in a nuclear power plant. One failed tube underwent scanning electron microscopy surface examination and optical microscope metallography. It was determined...
Abstract
Leaks developed at random locations in aluminum brass condenser tubes within the first year of operation of a steam condenser in a nuclear power plant. One failed tube underwent scanning electron microscopy surface examination and optical microscope metallography. It was determined that the tube failed from crevice corrosion under seawater deposits that had formed on the inner surface. Mechanical cleaning of the condenser tubes every 6 months and installation of intake screens of smaller mesh size were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001648
EISBN: 978-1-62708-234-1
... to the safety-related load rejection heat-exchanger system of a nuclear power plant. The arrangement of the three pumps is shown in schematic form in Fig. 2 . With the plant on-line, two of the pumps would be in continuous service. The third pump, the pump involved in the incident, would be held in standby...
Abstract
During a routine start-up exercise of a standby service water pump, a threaded coupling that joined sections of a 41.5 ft (12.7 m) long pump shaft experienced fracture. The pump was taken out of service and examined to determine the cause of fracture. It was apparent early in the examination that the fracture involved hydrogen stress cracking. However, the nature of the corrosive attack suggested an interaction between the threaded coupling and biological organisms living in the freshwater environment of the pump shaft. The organisms had colonized on the coupling, changing the local environment and creating conditions favorable to hydrogen stress cracking. This paper describes the analysis of the fracture of the coupling and provides an example of how biologically induced corrosion can result in unexpected fracture of a relatively basic machine part.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001082
EISBN: 978-1-62708-214-3
... in a circulating water pump in a power plant failed after approximately 8 months of operation. Their normal life expectancy was 20 years. The large impeller blades and hub were made of type 304L stainless steel in a single casting. Applications Large-diameter impeller pumps (2 to 4.5 m, or 7 to 15 ft...
Abstract
Several large-diameter type 304L stainless steel impeller/propeller blades in a circulating water pump failed after approximately 8 months of operation. The impeller was a single casting that had been modified with a fillet weld buildup at the blade root. Visual examination indicated that the fracture originated near the blade-to-hub attachment in the area of the weld buildup. Specimens from four failed castings and from an impeller that had developed cracks prior to design modification were subjected to a complete analysis. A number of finite-element-method computer models were also constructed. It was determined that the blades failed by fatigue that had been accelerated by stress-corrosion cracking. The mechanism of failure was flow-induced vibration, in which the vortex-shedding frequencies of the blades were attuned to the natural frequency of the blade/hub configuration. A number of solutions involving material selection and impeller redesign were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001679
EISBN: 978-1-62708-229-7
.... A. , EED850081, “Failed CVC-237 Mercury Pump Stage” , 1985 . 2. Thomas R. J. and Cahill J. M. , 863807, “Savannah River Plant 232-H Tritium Facilities Booster Pump Diffuser Stress Analysis” , 1985 . 3. Ehrhart W. S. and Eberhard B. A. , EED850343, “Cracked CVC-232-F Mercury...
Abstract
Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. Six stages [two machined (MP) and four electron beam (EB) welded] from the mercury diffusion pumps operating in the Tritium Purification process at SRS have been analyzed to determine their condition after nine months of usage. Several cracks were found around the necked region of the two MP stages. The EB welded stages, however, seemed to perform better in service; only two of four stages showed cracking. The cracking is caused by fatigue that has been enhanced by high stresses and tritium in the flange area. The EB welded stage appears to be a step in the right direction. Since the EB weld is a shrink fit, the surface is in compression, thereby eliminating crack propagation. In addition, shot peening has been employed to produce a compressive material surface since fatigue usually originates at the surface. Pitting was observed down the throat of the venturi. This pitting was caused by cavitation and erosion along the length of the venturi tube. Corrosion and pitting was seen on the exterior walls of the diffuser tubes. Stress-corrosion cracks were observed emanating from these corrosion pits. The corrosion likely occurred from the chloride ions present in the process cooling water. Shot peening is now being used in an attempt to place the outside of the diffuser tube in compression to eliminate the stress-corrosion cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001689
EISBN: 978-1-62708-233-4
... Abstract The drive shaft on a centrifugal pump fractured after five months of operation. The fracture occurred at a packing gland inside a sleeve against which the packing material sealed. The shaft and sleeve were of duplex stainless steel. In contrast to a previous conclusion that heating had...
Abstract
The drive shaft on a centrifugal pump fractured after five months of operation. The fracture occurred at a packing gland inside a sleeve against which the packing material sealed. The shaft and sleeve were of duplex stainless steel. In contrast to a previous conclusion that heating had caused property deterioration resulting in embrittlement and fracture, it was concluded that the shaft must have fractured (most probably by fatigue cracking originating at the change of section) and that heating had then taken place from friction between the rotating input shaft and the remaining part attached to the pump. High temperature was thus a result, not the cause, of the failure.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001044
EISBN: 978-1-62708-214-3
... was converted to a natural-gas-fired cogeneration power plant. Leaking tubes were first discovered when the vacuum pumps were tested during startup of the cogeneration plant. Circumstances Leading to Failure The condenser history was developed from a review of plant records and layup procedures...
Abstract
Inhibited admiralty brass (UNS C44300) condenser tubes used in a natural-gas-fired cogeneration plant failed during testing. Two samples, one from a leaking tube and the other from an on leaking tube, were examined. Chemical analyses were conducted on the tubes and corrosion deposits. Stress-corrosion cracking was shown to have caused the failure. The most probable corrosive was ammonia or an ammonium compound in the presence of oxygen and water. All of the tubes were replaced.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001370
EISBN: 978-1-62708-215-0
... Abstract A service water pump in a nuclear reactor failed when its shaft gave way. The fracture originated in the threaded portion of the sleeve nut on the drive-end side of the shaft. Results of the failure analysis showed that the cracking initiated at the thread root as a result of corrosion...
Abstract
A service water pump in a nuclear reactor failed when its shaft gave way. The fracture originated in the threaded portion of the sleeve nut on the drive-end side of the shaft. Results of the failure analysis showed that the cracking initiated at the thread root as a result of corrosion fatigue. Crack propagation occurred either by corrosion or mechanical fatigue. Evidence was found indicating high rotary bending stresses on the shaft during operation. The nonstandard composition of the En 8 steel used in the shaft and irregular maintenance reduced the life of the shaft. Recommendations included use of a case-hardened En 8 steel with the correct composition and regular maintenance of the pump.
1