Skip Nav Destination
Close Modal
By
P.C. Chan, J.C. Thornley
By
Jack J. Bodzin, Gordon W. Houser
By
G. Mark Tanner, James R. Harty
By
A.H. Khan
By
Pankhuri Sinha, Goutam Mukhopadhyay, Sandip Bhattacharyya
Search Results for
Pulverizers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 27
Search Results for Pulverizers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Failure of a Coal-Pulverizer Shafts from a Generation Station
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001620
EISBN: 978-1-62708-229-7
... Abstract Two vertical coal-pulverizer shafts at a coal-fired generation station failed after four to five years in service. One shaft was completely broken, and the other was unbroken but cracked at both ends. shaft material was AISI type 4340 Ni-Cr- Mo alloy steel, with a uniform hardness...
Abstract
Two vertical coal-pulverizer shafts at a coal-fired generation station failed after four to five years in service. One shaft was completely broken, and the other was unbroken but cracked at both ends. shaft material was AISI type 4340 Ni-Cr- Mo alloy steel, with a uniform hardness of approximately HRC 27. Metallographic examination of transverse sections through the surface-damaged areas adjacent to the cracks also showed additional small cracks growing at an angle of approximately 60 deg to the surface. The crack propagation mode appeared to be wholly transgranular. SEM examination revealed finely spaced striations on the crack surfaces, supporting a diagnosis of fatigue cracking. Crack initiation in the pulverizer shafts started as a result of fretting fatigue. Greater attention to lubrication was suggested, combined with asking the manufacturer to consider nitriding the splined shaft. It was suggested that the surfaces be securely clamped together and that an in-service maintenance program be initiated to ensure that the tightness of the clamping bolts was verified regularly.
Book Chapter
Analysis of an Unusual Failure of a Steel Shaft in a Coal Pulverizer
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001730
EISBN: 978-1-62708-229-7
... Abstract A shaft can crack twice before it fails. A Detroit electric plant had this experience with one in a coal pulverizer. Because the first crack rewelded partially (by friction) in service, the pulverizer remained serviceable until the second crack developed. Coal pulverizers Shafts...
Abstract
A shaft can crack twice before it fails. A Detroit electric plant had this experience with one in a coal pulverizer. Because the first crack rewelded partially (by friction) in service, the pulverizer remained serviceable until the second crack developed.
Image
6150 steel coal pulverizer shaft that failed by fatigue. (Left) Section thr...
Available to PurchasePublished: 01 January 2002
Fig. 11 6150 steel coal pulverizer shaft that failed by fatigue. (Left) Section through pulverizer showing the inner main shaft that fractured, repaired itself by friction welding, and fractured a second time. (Right) Photograph of the friction welded surface
More
Image
This is a sectional view of the central shaft of a coal pulverizer which fa...
Available to Purchase
in Analysis of an Unusual Failure of a Steel Shaft in a Coal Pulverizer
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 This is a sectional view of the central shaft of a coal pulverizer which failed twice at the indicated area before the mill had to be shut down. The first crack went through the shaft, but it was rewelded by friction due to the spring pressure and the weight of grinding mechanism.
More
Image
Two failed coal-pulverizer shafts. The broken shaft is on the right; the cr...
Available to Purchase
in Failure of a Coal-Pulverizer Shafts from a Generation Station
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 Two failed coal-pulverizer shafts. The broken shaft is on the right; the cracked shaft is on the left. The arrow indicates the position of the bowl end crack in the cracked shaft.
More
Image
6150 steel coal pulverizer shaft that failed by fatigue. (Left) Section thr...
Available to Purchase
in Fatigue Fracture of a 6150 Steel Main Shaft in a Coal Pulverizer
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 6150 steel coal pulverizer shaft that failed by fatigue. (Left) Section through pulverizer showing the inner main shaft that fractured, repaired itself by friction welding, and fractured a second time. (Right) Photograph of the friction welded surface
More
Book Chapter
Fatigue Fracture of a 6150 Steel Main Shaft in a Coal Pulverizer
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047813
EISBN: 978-1-62708-229-7
... Abstract After being in service for ten years the ball-and-race coal pulverizer was investigated after noises were noted in it. Its lower grinding ring was attached to the 6150 normalized steel outer main shaft while the upper grinding ring was suspended by springs from a spider attached...
Abstract
After being in service for ten years the ball-and-race coal pulverizer was investigated after noises were noted in it. Its lower grinding ring was attached to the 6150 normalized steel outer main shaft while the upper grinding ring was suspended by springs from a spider attached to the shaft. A circumferential crack in the main shaft at an abrupt change in shaft diam just below the upper radial bearing was revealed by visual examination. The smaller end of the shaft was found to be slightly eccentric with the remainder when the shaft was set up in a lathe to machine out the crack for repair welding. The crack was opened by striking the small end of the shaft and the shaft was broken 1.3 cm away from the crack in the process. A previous fracture that resulted from torsional loading acting along a plane of maximum shear was revealed almost perpendicular to the axis of the shaft. Faint lines parallel to the visible crack thought to be fatigue cracks were revealed on examination of the machined surface. The shaft was repaired by welding a new section and machined to required diameters and tapers to avoid abrupt changes.
Book Chapter
Contact Fatigue Failure of A Bull Gear
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001300
EISBN: 978-1-62708-215-0
... Abstract A bull gear from a coal pulverizer at a utility failed by rolling-contact fatigue as the result of continual overloading of the gear and a nonuniform, case-hardened surface of the gear teeth. The gear consisted of an AISI 4140 Cr-Mo steel gear ring that was shrunk fit and pinned onto...
Abstract
A bull gear from a coal pulverizer at a utility failed by rolling-contact fatigue as the result of continual overloading of the gear and a nonuniform, case-hardened surface of the gear teeth. The gear consisted of an AISI 4140 Cr-Mo steel gear ring that was shrunk fit and pinned onto a cast iron hub. The wear and pitting pattern in the addendum area of the gear teeth indicated that either the gear or pinion was out of alignment. Beach marks observed on the fractured surface of the gear indicated that fatigue was the cause of the gear failure. Similar gears should be inspected carefully for signs of cracking or misalignment. Ultrasonic testing is recommended for detection of subsurface cracks, while magnetic particle testing will detect surface cracking. Visual inspection can be used to determine the teeth contact pattern.
Book Chapter
Corrosion of Copper Cooling-Water Tubing in a Heat Exchanger
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001700
EISBN: 978-1-62708-229-7
... Abstract A straight-tube cooler type heat exchanger had been in service for about ten years serving a coal pulverizer in Georgia. Non-potable cooling water from a local lake passed through the inner surfaces of the copper tubing and was cooling the hot oil that surrounded the outer diametral...
Abstract
A straight-tube cooler type heat exchanger had been in service for about ten years serving a coal pulverizer in Georgia. Non-potable cooling water from a local lake passed through the inner surfaces of the copper tubing and was cooling the hot oil that surrounded the outer diametral surfaces. Several of the heat exchangers used in the same application at the plant had experienced a severe reduction in efficiency in the past few years. One heat exchanger reportedly experienced some form of leakage following discovery of oil contaminating the cooling water. This heat exchanger was the subject of a failure investigation to determine the cause and location of the leaks. Corrosion products primarily contained copper oxide, as would be expected from a copper tubing. The product also exhibited the presence of a significant amount of iron oxides. Metallographic cross sectioning of the tubes and microscopic analysis revealed several large and small well rounded corrosion pits present at the inner diametral surfaces. The cause of corrosion was attributed to corrosive waters that were not only corroding the copper, but were corroding steel pipes upstream from the tubing.
Image
Failure wear mechanisms of unidirectional fiber reinforced polymer composit...
Available to PurchasePublished: 01 January 2002
. 1, wear of matrix by plowing, cracking, cutting as a result of plastic deformation; 2, wear thinning of fiber or tip resulting in elliptical, well-polished tip; 3, matrix cracking; 4, edge delamination and fiber fibrillation; 5, fiber cracking; 6, pulverized fiber wear debris; 7, deterioration
More
Image
Optical micrograph showing example of fretted region on side surface of key...
Available to Purchase
in Failure of a Coal-Pulverizer Shafts from a Generation Station
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 2 Optical micrograph showing example of fretted region on side surface of keyway in cracked coal-pulverizer shaft. u, undamaged area; d, damaged area. The dashed line shows the edge of the damaged area. The arrow “O” indicates the fracture origin, which corresponds to crack “A” of Fig. 3
More
Image
Scanning electron micrographs of abraded surfaces of composites against 80 ...
Available to PurchasePublished: 01 January 2002
of microcracking. (c) Initiation of fiber pulverization. Source: Ref 29
More
Image
Diagram of the stages of delamination caused by repeated impact on a cerami...
Available to PurchasePublished: 01 January 2002
Fig. 14 Diagram of the stages of delamination caused by repeated impact on a ceramic surface. Stage 1 fracturing on the surface and crushing of debris; stage 2, extrusion of pulverized debris in interstices and compaction of a fine grained film; stage 3, nucleation of cracks along the weak
More
Image
Schematic diagram of the stages of delamination caused by repeated impact o...
Available to PurchasePublished: 15 January 2021
Fig. 16 Schematic diagram of the stages of delamination caused by repeated impact on a ceramic surface. Stage 1, fracturing on the surface and crushing of debris; stage 2, extrusion of pulverized debris in interstices and compaction of a fine-grained film; stage 3, nucleation of cracks along
More
Image
Scanning electron microscope micrographs of worn surfaces of PA66 unidirect...
Available to PurchasePublished: 01 January 2002
Fig. 19 Scanning electron microscope micrographs of worn surfaces of PA66 unidirectional composites. (a) Carbon fiber (parallel, P) showing fiber thinning, fiber fracture, fiber pulverization (left portion) and fiber matrix debonding (middle portion). (b) Aramid fiber (AF) in the normal
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003572
EISBN: 978-1-62708-180-1
..., was at 30% loading of short GF. The difference in the severity of the fiber damage in the 10% polyetherimide (PEI) composite due to these different grit sizes can be seen in Fig. 6(a) and (b) . The various stages of fiber cracking, cutting, and pulverization in 30% GF composite are shown in Fig. 6(c...
Abstract
This article reviews the abrasive and adhesive wear failure of several types of reinforced polymers, including particulate-reinforced polymers, short-fiber reinforced polymers (SFRP), continuous unidirectional fiber reinforced polymers (FRP), particulate-filled composites, mixed composites (SFRP and particulate-filled), unidirectional FRP composites, and fabric reinforced composites. Friction and wear performance of the composites, correlation of performance with various materials properties, and studies on wear-of failure mechanisms by scanning electron microscopy are discussed for each of these types.
Book Chapter
Grinding Plate Wear Failure Analysis
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0091853
EISBN: 978-1-62708-223-5
... particles has a significant effect on the wear behavior of the grinding plates in the attrition mill, with quartz attrition leading to failure of the part in the following way. When the quartz particles are pulverized by the rubbing action between the rotating plate and the stationary plate, particles...
Abstract
A 230 mm (9 in.) diameter disk attrition mill was scheduled to grind 6.35 mm (0.25 in.) diameter quartz particles to a 0.075 mm (0.003 in.) diameter powder. Due to severe wear on the grinding plates, however, the unit was unable to complete the task of grinding the rock. The mill consisted of a heavy gray cast iron frame, a gravity feeder port, a runner, and a heavy-duty motor. The frame and gravity feeder weighed over 200 kg (440 lb) and, in some areas, was over 25 mm (1 in.) thick. To obtain the operating speed of 200 rpm, a gear system was used to transmit the torque from the 2-hp motor. The runner consisted of a 50 mm (2 in.) diameter shaft and two gray cast iron grinding plates. Investigation (visual inspection, historical review, photographs, model testing of new plates, chemical analysis, hardness testing, optical macrographs, and optical micrographs) supported the conclusion that the primary feed material was harder than the grinding plates, causing wear and eventual failure. Recommendations included reducing the clearance between the flutes and possible material changes.
Book Chapter
Investigation on Bulging of Blow Pipe in a Blast Furnace
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001850
EISBN: 978-1-62708-241-9
... in service by bulging out over a localized area. The bulging occurred at 3 O’clock position with a length, width, and height of 300, 150, and 12 mm, respectively. The location of bulging in the blow pipe was adjacent to the injection lance used for injecting pulverized coal into the furnace ( Fig. 1...
Abstract
After about a year of uninterrupted service, one of the blow pipes on a blast furnace developed a bulge measuring 300 x 150 x 12 mm. The conical shaped section was removed from the furnace and examined to determine why it failed. The investigation consisted of visual inspection, chemical analysis, microstructural characterization, and mechanical property testing. The pipe was made from nonresulfurized carbon steel as specified and was lined with an alumina refractory. Visual inspection revealed cracks in the refractory lining, which corresponded with the location of the bulge. Microstructural and EDS analysis yielded evidence of overheating, revealing voids, scale, grain boundary oxidation, decarburization, and grain coarsening on the inner surface of the pipe, which also suggest the initiation of creep. Based on the information gathered during the investigation, the blow pipe was exposed to high temperatures when the liner cracked and subsequently bulged out due to creep.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
Abstract
This article discusses failures in shafts such as connecting rods, which translate rotary motion to linear motion, and in piston rods, which translate the action of fluid power to linear motion. It describes the process of examining a failed shaft to guide the direction of failure investigation and corrective action. Fatigue failures in shafts, such as bending fatigue, torsional fatigue, contact fatigue, and axial fatigue, are reviewed. The article provides information on the brittle fracture, ductile fracture, distortion, and corrosion of shafts. Abrasive wear and adhesive wear of metal parts are also discussed. The article concludes with a discussion on the influence of metallurgical factors and fabrication practices on the fatigue properties of materials, as well as the effects of surface coatings.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
... modes of material removal occur during impact. Brittle deformation is linked to the creation of pits (formed when material is adhesively plucked from the surface of one impacting body by the other), partial ring cracks, and delamination layers. The removed material is pulverized and compacted...
Abstract
This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear apparatus. Most mechanical components continue to be functional beyond the zero wear limit, and their usefulness is normally connected with the loss of a specific depth of material. The article reviews the zero impact wear model and some measurable impact wear models. It presents a case study illustrating the impact of wear failure on automotive engine inlet valves and seat inserts.
1