1-20 of 215 Search Results for

Pressure vessels

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... Abstract This article discusses the effect of using unsuitable alloys, metallurgical discontinuities, fabrication practices, and stress raisers on the failure of a pressure vessel. It provides information on pressure vessels made of composite materials and their welding practices. The article...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091726
EISBN: 978-1-62708-217-4
... Abstract In January 1965, a Reaction Control System (RCS) pressure vessel (titanium alloy Ti-6Al-4V) on an Apollo spacecraft cracked in six adjacent locations. It used N2O4 for vehicle attitude control through roll, pitch, and yaw engines, and was protected from the N2O4 by a Teflon positive...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001813
EISBN: 978-1-62708-241-9
... ( 1990 ) 10. Thielsch H. : Defects and Failures in Pressure Vessel and Piping . Rheinhold Publishing Co , New York, USA ( 1965 ) 11. Hau J. , Seijas A. , Munsterman T. , Mayorga A. : Evaluation of Aging Equipment for Continued Service, Corrosion 2005, Paper 05558...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... Abstract This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed...
Image
Published: 01 June 2019
Fig. 1 Alloy steel pressure vessels that developed cracks in the wall during autofrettage. Failure was due to scale worked into the surface of the vessel. (a) Overall view of the vessels; the cracked component is the second from left (arrow indicates crack). (b) Section cut for examination More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001440
EISBN: 978-1-62708-235-8
.... The vessel was 11.5 in. diameter, 50 in. high, and the ends, 0.12 in. thick were dished outwardly to almost hemispherical form. It was designed for a working pressure of 30 atm. (440 p.s.i.), was of welded construction, and had been in use for ten years. At the centre of the top end it was fitted with a hand...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001053
EISBN: 978-1-62708-214-3
... Abstract A carbon steel (ASTM A515 grade 70) pressure vessel failed by brittle fracture while being hydro tested in the fabricating shop. The fracture origin was a small crack at a welding arc strike associated with the toe of a nozzle weld. A fracture mechanics calculation indicated...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047641
EISBN: 978-1-62708-235-8
... Abstract A Ti-6Al-4V alloy pressure vessel failed during a proof-pressure test, fracturing along the center girth weld. The girth joints were welded with the automatic gas tungsten arc process utilizing an auxiliary trailing shield attached to the welding torch to provide inert-gas shielding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001181
EISBN: 978-1-62708-220-4
... Abstract A forged pressure vessel made from high temperature austenitic steel X8Cr-Ni-MoVNb 16 13 K (DIN 1.4988) failed. The widest part of the burst had fine cracks on the internal wall running longitudinally. When the internal wall was cleaned, numerous even finer cracks were exposed...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001137
EISBN: 978-1-62708-228-0
... Abstract Following a fracture mechanics “fitness-for-purpose” analysis of petroleum industry cold service pressure vessels, using the British Standard PD 6493, it was realized that an analogous approach could be used for the failure analysis of a similar pressure vessel dome which had failed...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001059
EISBN: 978-1-62708-214-3
... steel column in diglycol amine vacuum service had visible OD pitting in several areas above the insulation support rings. Circumstances Leading to Failure Although the column was used in diglycol amine vacuum service, previous service included pressurized operation. The pitted areas were...
Image
Published: 01 June 2019
Fig. 1 Cracks in pressure vessel made of ASTM A515 carbon steel lined with type 405 stainless steel. Failure occurred at plug welds because of dilution of weld metal. (a) Micrograph of specimen through weld area etched in acid cupric chloride showing ASTM A515 carbon steel (top), interface More
Image
Published: 01 June 2019
Fig. 1 Photograph of the failed pressure vessel dome illustrating the initiating crack region. More
Image
Published: 01 June 2019
Fig. 1 Large enclosed cylindrical pressure vessel that failed by SCC because of caustic embrittlement by potassium hydroxide. (a) View of vessel before failure and details of nozzle and tray support. Dimensions given in inches. (b) Micrograph showing corrosion pits at edge of fracture surface More
Image
Published: 01 June 2019
Fig. 1 Center girth weld of a Ti-6Al-4V pressure vessel that failed during proof testing because of weld embrittlement resulting from oxygen contamination. (a) Interior surface of the weld illuminated with ultraviolet light, which reveals fluorescent liquid-penetrant indications of transverse More
Image
Published: 01 June 2019
Fig. 2 Fracture path of failed pressure vessel. The arrows indicate the direction of crack propagation as determined from the chevron markings on the fracture faces. The letters identify the individual plates. More
Image
Published: 01 June 2019
Fig. 1 General view of damaged pressure vessel as delivered, 1 4 × More
Image
Published: 01 June 2019
Fig. 1 Large thick-wall pressure vessel that failed because of cracking in weld HAZ. (a) Configuration and dimensions (given in inches). (b) Shattered vessel. (c) General appearance of one fracture surface; arrow points to facet at fracture origin. (d) Enlarged view of region at arrow in (c More
Image
Published: 30 August 2021
Fig. 28 (a) Large thick-walled pressure vessel that failed because of cracking in weld heat-affected zone (dimensions given in inches). (b) Shattered vessel. (c) General appearance of one fracture surface; arrow points to facet at fracture origin. (d) Enlarged view of region at arrow in (c More
Image
Published: 30 August 2021
Fig. 29 Cracks in pressure vessel made of ASTM A515 carbon steel lined with type 405 stainless steel. Failure occurred at plug welds because of dilution of weld metal. (a) Micrograph of specimen through weld area etched in acid cupric chloride showing ASTM A515 carbon steel (top), interface More