Skip Nav Destination
Close Modal
By
Egon Kauczor
By
Iván Uribe Pérez, Tito Luiz da Silveira, Tito Fernando da Silveira, Heloisa Cunha Furtado
By
M. Mobin, A. U. Malik
By
William R. Warke
By
David O. Leeser
By
Gordon Aaker, Jr., Paul Agosta
By
Luis A. Ganhao, Jorge J. Perdomo, James McVay, Antonio Seijas
By
J. Ciulik
By
R.B. Tait, D.P. Spencer, P.R. Fry, G.G. Garrett
By
Ladislav Kosec, Franc Vodopivec, Bogomir Wolf
Search Results for
Pressure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 741
Search Results for Pressure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Pressure Vessel from a High-Pressure Vibratory Autoclave Burst by Explosion
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001181
EISBN: 978-1-62708-220-4
... Abstract A forged pressure vessel made from high temperature austenitic steel X8Cr-Ni-MoVNb 16 13 K (DIN 1.4988) failed. The widest part of the burst had fine cracks on the internal wall running longitudinally. When the internal wall was cleaned, numerous even finer cracks were exposed...
Abstract
A forged pressure vessel made from high temperature austenitic steel X8Cr-Ni-MoVNb 16 13 K (DIN 1.4988) failed. The widest part of the burst had fine cracks on the internal wall running longitudinally. When the internal wall was cleaned, numerous even finer cracks were exposed. On the fracture surfaces in this region an irregularly formed zone was visible in the direction of the internal wall and a fibrous oriented fracture zone towards the external wall. The fracture was typical of stress-corrosion cracking in austenitic steels. Vanadium trichloride was present and tensile stresses were of necessity set up by the internal pressure. Stress-corrosion cracking does not occur if one of the basic requirements is lacking. Because the chloride agent and tensile stresses were inevitably present, the only possible way to prevent future reoccurrence is to forge the entire pressure vessel from a material immune to stress-corrosion cracking or to use interchangeable linings of such a material. A nickel alloy could be considered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... Abstract This article discusses the effect of using unsuitable alloys, metallurgical discontinuities, fabrication practices, and stress raisers on the failure of a pressure vessel. It provides information on pressure vessels made of composite materials and their welding practices. The article...
Abstract
This article discusses the effect of using unsuitable alloys, metallurgical discontinuities, fabrication practices, and stress raisers on the failure of a pressure vessel. It provides information on pressure vessels made of composite materials and their welding practices. The article explains the failure of pressure vessels with emphasis on stress-corrosion cracking, hydrogen embrittlement, brittle and ductile fractures, creep and stress rupture, and fatigue with examples.
Book Chapter
Graphitization in Low Alloy Steel Pressure Vessels and Piping
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001813
EISBN: 978-1-62708-241-9
... or no effect. The cases examined show that knowledge is incomplete in regard to graphitization, and the prediction of its occurrence is not yet possible. pressure vessels piping creep deformation cracking high temperatures low alloy steel cracking perforations metallographic analysis...
Abstract
Graphitization, the formation of graphite nodules in carbon and low alloy steels, contributes to many failures in high-temperature environments. Three such failures in power-generating systems were analyzed to demonstrate the unpredictable nature of this failure mechanism and its effect on material properties and structures. In general, the more randomly distributed the nodules, the less effect they have on structural integrity. In the cases examined, the nodules were found to be organized in planar arrays, indicating they might have an effect on material properties. Closer inspection, however, revealed that the magnitude of the effect depends on the relative orientation of the planar arrangement and principle tensile stress. For normal orientation, the effect of embrittlement tends to be most severe. Conversely, when the orientation is parallel, the nodules have little or no effect. The cases examined show that knowledge is incomplete in regard to graphitization, and the prediction of its occurrence is not yet possible.
Book Chapter
Caustic Corrosion Failure of Back Wall Riser Tube in a High-Pressure Boiler
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001826
EISBN: 978-1-62708-241-9
... Abstract A back wall riser tube in a high pressure boiler failed, interrupting operations in a cogeneration plant. The failure occurred in a tube facing the furnace, causing eight ruptured openings over a 1.8 m section. The investigation consisted of an on-site visual inspection, nondestructive...
Abstract
A back wall riser tube in a high pressure boiler failed, interrupting operations in a cogeneration plant. The failure occurred in a tube facing the furnace, causing eight ruptured openings over a 1.8 m section. The investigation consisted of an on-site visual inspection, nondestructive testing, energy dispersive x-ray analysis, and inductively coupled plasma mass spectrometry. The tube was made from SA 210A1 carbon steel that had been compromised by wall thinning and the accumulation of fire and water-side scale deposits. Investigators determined that the tube failed due to prolonged caustic attack that led to ruptures in areas of high stress. The escaping steam eroded the outer surface of the tube causing heavy loss of metal around the rupture points.
Book Chapter
Hydrotest Failure of a Carbon Steel Pressure Vessel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001053
EISBN: 978-1-62708-214-3
... Abstract A carbon steel (ASTM A515 grade 70) pressure vessel failed by brittle fracture while being hydro tested in the fabricating shop. The fracture origin was a small crack at a welding arc strike associated with the toe of a nozzle weld. A fracture mechanics calculation indicated...
Abstract
A carbon steel (ASTM A515 grade 70) pressure vessel failed by brittle fracture while being hydro tested in the fabricating shop. The fracture origin was a small crack at a welding arc strike associated with the toe of a nozzle weld. A fracture mechanics calculation indicated that this imperfection, although small, initiated fracture because of the local geometry and stress conditions and the low toughness of the steel. It was recommended that (1) the probability of flaws be reduced by welding over or grinding out arc strikes, (2) the local stresses be lowered by post weld stress relief and improved weld toe geometry, and (3) toughness be improved by specifying fine-grain steel and/ or by normalizing.
Book Chapter
Failure of a High-Pressure Water-Line Plug in a Fire Sprinkler System
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001058
EISBN: 978-1-62708-214-3
... obtained indicated that the failure resulted from human error. Castings Pipe Plugs Splitting White iron (Other, general, or unspecified) fracture Background A 32 mm ( 1 1 4 in.) pipe plug ( Fig. 1 and 2 ) split water line pressurized at 550 kPa (80 psig). The worker...
Abstract
A white cast iron water-line plug in a fire sprinkler systems split during leak repair. Examination revealed no material flaws, fatigue, or excessive corrosion. The plug head exhibited signs of excessive loads used in attempts to force the plug farther into the pipe. The evidence obtained indicated that the failure resulted from human error.
Book Chapter
Field Replication of Stress-Corrosion Cracking in a Type 316 Stainless Pressure Vessel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001059
EISBN: 978-1-62708-214-3
... steel column in diglycol amine vacuum service had visible OD pitting in several areas above the insulation support rings. Circumstances Leading to Failure Although the column was used in diglycol amine vacuum service, previous service included pressurized operation. The pitted areas were...
Abstract
Field metallography and replication were performed on a type 316 stainless steel column in diglycol amine vacuum service to determine the cause of visible OD pitting on the column in several areas above the insulation support rings. The examination revealed transgranular stress-corrosion cracking beneath the pitted areas on the OD. The likely cause of the cracking was chloride stress corrosion, with chlorides deriving from the marine atmosphere and concentrating under the insulation around the support rings. A complete insulation evaluation, including repair or replacement, was recommended to prevent chloride buildup. Painting of the steel surface with an epoxy-phenolic or epoxy-coal tar was also suggested.
Book Chapter
Failures of Pressure Vessels and Process Piping
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... Abstract This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001331
EISBN: 978-1-62708-215-0
... Abstract A high-pressure steam pipe specified to be P22 low-alloy steel failed after 25 years of service. Located at the end of the steam line, the pipe reportedly received no steam flow during normal service. Visual examination of the failed pipe section revealed a window fracture...
Abstract
A high-pressure steam pipe specified to be P22 low-alloy steel failed after 25 years of service. Located at the end of the steam line, the pipe reportedly received no steam flow during normal service. Visual examination of the failed pipe section revealed a window fracture that appeared brittle in nature. Specimens from the fracture area and from an area well away from the fracture were examined metallographically and chemically analyzed. Results indicated that the pipe had failed by hydrogen damage that resulted in brittle fracture. Chemical analysis indicated that the pipe material was 1020 carbon steel, not P22. The misapplication of pipe material was considered to be a contributing factor. Position of the pipe within the system caused the localized damage.
Book Chapter
Failure Analysis of a Cracked Low-Pressure Turbine Blade
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001355
EISBN: 978-1-62708-215-0
... Abstract A cracked, martensitic stainless steel, low-pressure turbine blade from a 623 MW turbine generator was found to exhibit fatigue cracks during a routine turbine inspection. The blade was cracked at the first notch of the fir tree and the cracks initiated at pits induced by chloride...
Abstract
A cracked, martensitic stainless steel, low-pressure turbine blade from a 623 MW turbine generator was found to exhibit fatigue cracks during a routine turbine inspection. The blade was cracked at the first notch of the fir tree and the cracks initiated at pits induced by chloride attack. Examination of the blade microstructure at the fracture origins revealed oxide-filled pits and transgranular cracks. The oxide filled cracks appeared to have originated at small surface pits and probably propagated in a fatigue or corrosion-fatigue fracture mode. It was recommended that the sources of the chlorides be eliminated and that the remaining blades be inspected at regular maintenance intervals for evidence of cracking.
Book Chapter
A Fracture Mechanics Based Failure Analysis of a Cold Service Pressure Vessel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001137
EISBN: 978-1-62708-228-0
... Abstract Following a fracture mechanics “fitness-for-purpose” analysis of petroleum industry cold service pressure vessels, using the British Standard PD 6493, it was realized that an analogous approach could be used for the failure analysis of a similar pressure vessel dome which had failed...
Abstract
Following a fracture mechanics “fitness-for-purpose” analysis of petroleum industry cold service pressure vessels, using the British Standard PD 6493, it was realized that an analogous approach could be used for the failure analysis of a similar pressure vessel dome which had failed in service some years previously. The failed pressure vessel, with a diam of 2.5 m and several meters tall, had been made of 12 mm thick IZETT steel plate of the same type and heat treatment as used in the earlier fitness-for-purpose already measured. Examination of the fracture surfaces suggested, from fatigue striations manifested by SEM, that the vessel was subject to significant fatigue cracking, which was probably corrosion assisted. From COD measurements at the operating temperature of -130 deg C (-202 deg F), and a finite stress analysis, a fracture mechanics evaluation using BS PD6493 yielded realistic critical flaw sizes (in the range 51 to 150 mm). These sizes were consistent with the limited fracture surface observations and such flaws could well have been present in the vessel dome prior to catastrophic failure. For similar pressure vessels, an inspection program based on a leak-before-break philosophy was consequently regarded as acceptable.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0048819
EISBN: 978-1-62708-233-4
... Abstract A large pressure vessel that had been in service as a hydrogen sulfide (H2S) absorber developed cracks and began leaking at a nozzle. The vessel contained a 20% aqueous solution of potassium hydroxide (KOH), potassium carbonate (K2CO3), and arsenic. The vessel wall was manufactured...
Abstract
A large pressure vessel that had been in service as a hydrogen sulfide (H2S) absorber developed cracks and began leaking at a nozzle. The vessel contained a 20% aqueous solution of potassium hydroxide (KOH), potassium carbonate (K2CO3), and arsenic. The vessel wall was manufactured of ASTM A516, grade 70, low-carbon steel plate. A steel angle had been formed into a ring was continuously welded to the inside wall of the vessel. The groove formed by the junction of the lower tray-support weld and the top part of the weld around the nozzle was found to have a crack. Pits and scale near the crack origin were revealed by microscopic examination and cracking was found to be transgranular. Periods of corrosion alternated with sudden instances of cleavage, under a tensile load, along preferred slip planes were interpreted during examination with a microscope. It was concluded that the combination of the residual plus operating stresses and the amount of KOH present would have caused stress corrosion as a result of caustic embrittlement. It was recommended that the tray support should be installed higher on the vessel wall to prevent coincidence of the lower tray-support weld with the nozzle weld.
Book Chapter
Reaction Control System Oxidizer Pressure Vessels
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091726
EISBN: 978-1-62708-217-4
... Abstract In January 1965, a Reaction Control System (RCS) pressure vessel (titanium alloy Ti-6Al-4V) on an Apollo spacecraft cracked in six adjacent locations. It used N2O4 for vehicle attitude control through roll, pitch, and yaw engines, and was protected from the N2O4 by a Teflon positive...
Abstract
In January 1965, a Reaction Control System (RCS) pressure vessel (titanium alloy Ti-6Al-4V) on an Apollo spacecraft cracked in six adjacent locations. It used N2O4 for vehicle attitude control through roll, pitch, and yaw engines, and was protected from the N2O4 by a Teflon positive expulsion bladder. Investigation (visual inspection, pressure testing of 10 similar vessels, and chemical testing of the N2O4) supported the conclusion that the failure was due to stress corrosion from the N2O4, and specifically from a specification change in the military specification MIL-P-26539. Recommendations included revising the specification to require a minimum NO content of 0.6%.
Book Chapter
Failure of an External Tank Pressure/Vent Valve
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006424
EISBN: 978-1-62708-217-4
... Abstract An external tank pressure/vent valve regulates the external tank fuel feed system, which transfers fuel under pressure to the internal tanks of the aircraft. A dual-position valve was found to be sticking at the intermediate positions. Also, service air check valves located...
Abstract
An external tank pressure/vent valve regulates the external tank fuel feed system, which transfers fuel under pressure to the internal tanks of the aircraft. A dual-position valve was found to be sticking at the intermediate positions. Also, service air check valves located on the incoming lines contained poppets that were being stuck in a closed or partially closed position because of suspected corrosion product. Residue taken from the check valve poppet and from the dual-position valve was chemically analyzed. Chloride was present in both samples. It was suspected that moisture entering the service air lines left a chloride-containing compound upon evaporation within the air check valves and pressure/vent assembly. This compound subsequently reacted with the anodized, dichromate sealed check valve housing to lock the check valve poppets in a closed or partially closed position, decreasing the actual pressure being supplied to the pressure/vent valve. It was recommended that an inspection be conducted to ensure that the service air check valves are operating properly prior to removal and servicing of the pressure/vent valve assembly. It was also recommended that dry-film lubricant be checked to ensure that it meets specifications for the pressure/vent valve assembly.
Book Chapter
Preventive Analyses of Croloy 1 1 4 Pressure Parts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048845
EISBN: 978-1-62708-229-7
... inspection. The unit was operated under reduced-temperature conditions and with less load cycling than previously until a redesigned SA335-P22 header was installed. Boilers Piping Pressure vessels Superheaters ASME SA335-P11 Creep fracture/stress rupture It is generally not possible...
Abstract
The maximum life of base-loaded headers and piping is not possible to be predicted until they develop microcracking. The typical elements of a periodic inspection program after the occurrence of the crack was described extensively. Cracks caused by creep swelling in the stub-to-header welds in the secondary superheater outlet headers (constructed of SA335-P11 material) of a major boiler were described as an example. The OD of the header was measured to detect the amount of swelling and found to have increased 1.6% since its installation. Ligament cracks extending from tube seat to tube seat were revealed by surface inspection. Cracks were found to originate from inside the header, extend axially in the tube penetrations and radially from those holes into the ligaments. Cracks in 94 locations, ranging from small radial cracks to full 360Ý cracks were revealed by dye-penetrant inspection. The unit was operated under reduced-temperature conditions and with less load cycling than previously until a redesigned SA335-P22 header was installed.
Book Chapter
“On-Load Corrosion” in Tubes of High Pressure Boilers
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001396
EISBN: 978-1-62708-229-7
... have been produced by the pressure exerted by molecular hydrogen formed from combination of hydrogen formed from combination of hydrogen atoms which diffused to the locality. Hydrogen in the molecular form is not able to diffuse through the iron lattice, and it is possible for an appreciable pressure...
Abstract
The phenomenon of on-load corrosion is directly associated with the production of magnetite on the water-side surface of boiler tubes. On-load corrosion may first be manifested by the sudden, violent rupture of a boiler tube, such failures being found to occur predominantly on the fire-side surface of tubes situated in zones exposed to radiant heat where high rates of heat transfer pertain. In most instances, a large number of adjacent tubes are found to have suffered, the affected zone frequently extending in a horizontal band across the boiler. In some instances, pronounced local attack has taken place at butt welds in water-wall tubes, particularly those situated in zones of high heat flux. To prevent on-load corrosion an adequate flow of water must occur within the tubes in the susceptible regions of a boiler. Corrosion products and suspended matter from the pre-boiler equipment should be prevented from entering the boiler itself. Also, it is good practice to reduce as far as possible the intrusion of weld flash and other impedances to smooth flow within the boiler tubes.
Book Chapter
Failure of a Flange from a High Pressure Feeder Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001249
EISBN: 978-1-62708-236-5
... with the flange material ( Fig. 13 ). In other places the join is broken by scale. A high temperature is necessary to achieve such a weld and a high pressure also unless one of the two partners is soft or molten. Fig. 12 Area on inner surface of flange smeared with another metal. Grey patches are scale...
Abstract
The flanged bearing bush carrying the drive shaft of a feed pump suddenly fractured after about two years of service. The chemical composition was normal for high chromium ledeburitic cast steel, which was corrosion and wear resistant as well as refractory. For unknown reasons the rotating shaft came into direct contact with the flange. Mechanical friction caused a rise in temperature on both contact surfaces. This mutual contact lasted long enough for the temperature in the contact zone to exceed 1200 deg C, at which the flange material became softened or molten. As a result, considerable structural changes took place on the inner wall of the flange. Thermal stresses and excessive mechanical loads due to smearing of the flange material then led to fracture of the flange.
Book Chapter
Fracture of Welds in a Pressure Vessel Because of Atmospheric Contamination
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047641
EISBN: 978-1-62708-235-8
... Abstract A Ti-6Al-4V alloy pressure vessel failed during a proof-pressure test, fracturing along the center girth weld. The girth joints were welded with the automatic gas tungsten arc process utilizing an auxiliary trailing shield attached to the welding torch to provide inert-gas shielding...
Abstract
A Ti-6Al-4V alloy pressure vessel failed during a proof-pressure test, fracturing along the center girth weld. The girth joints were welded with the automatic gas tungsten arc process utilizing an auxiliary trailing shield attached to the welding torch to provide inert-gas shielding for the exterior surface of the weld. A segmented backup ring with a gas channel was used inside the vessel to shield the weld root. The pressure vessel failed due to contamination of the fusion zone by oxygen, which resulted when the gas shielding the root face of the weld was diluted by air that leaked into the gas channel. Thermal stresses cracked the embrittled weld, exposing the crack surfaces to oxidation before cooling. One of these cracks caused a stress concentration so severe that failure of the vessel wall during the proof test was inevitable. A sealing system at the split-line region of the segmented backup ring was provided, and a fine-mesh stainless steel screen diffuser was incorporated in the channel section of the backup ring to prevent air from leaking in. A titanium alloy color chart was furnished to permit correlation of weld-zone discoloration with the degree of atmospheric contamination.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047144
EISBN: 978-1-62708-235-8
... Abstract During autofrettage of a thick-wall steel pressure vessel, a crack developed through the wall of the component. Certain forged pressure vessels are subjected to autofrettage during their manufacture to induce residual compressive stresses at locations where fatigue cracks may initiate...
Abstract
During autofrettage of a thick-wall steel pressure vessel, a crack developed through the wall of the component. Certain forged pressure vessels are subjected to autofrettage during their manufacture to induce residual compressive stresses at locations where fatigue cracks may initiate. The results of the autofrettage process, which creates a state of plastic strain in the material, is an increase in the fatigue life of the component. Analysis (visual inspection, 50x/500x unetched micrographs, and electron microprobe analysis) supports the conclusion that the fracture toughness of the steel was exceeded, and failure through the wall occurred because of the following reason: the high level of iron oxide found is highly abnormal in vacuum-degassed steels. Included matter of this nature (exogenous) most likely resulted from scale worked into the surface during forging. Therefore, it is understandable that failure occurred during autofrettage when the section containing these defects was subjected to plastic strains. Because the inclusions were sizable, hard, and extremely irregular, this region would effect substantial stress concentration. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047749
EISBN: 978-1-62708-235-8
... Abstract A type 321 stainless steel (AMS 5570) pressure-tube assembly that contained a brazed reinforcing liner leaked during a pressure test. Fluorescent liquid-penetrant inspection revealed a circumferential crack extended approximately 180 deg around the tube parallel to the fillet...
Abstract
A type 321 stainless steel (AMS 5570) pressure-tube assembly that contained a brazed reinforcing liner leaked during a pressure test. Fluorescent liquid-penetrant inspection revealed a circumferential crack extended approximately 180 deg around the tube parallel to the fillet of the brazed joint. The presence of multiple origin cracks was indicated on the inside surface of a fractured portion of the crack surface. The cracks had originated adjacent to the braze joining the tube and the reinforcing liner and propagated through the wall to the outer surface. The residues on the inner surface of the tube were identified as fluorides from the brazing flux by chemical analysis. The nature of the crack, potential for corrosion due to residual fluorides and residual swaging stress in the tube prior to brazing, confirmed that failure of the tube end was due to stress-corrosion cracking. Stress relief treatment of tube before brazing and immediate cleaning of brazing residual fluorides was recommended to avoid failure.
1