1-20 of 77 Search Results for

Precipitator wires

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0065826
EISBN: 978-1-62708-233-4
... Abstract The wires used in a wet precipitator for cleaning the gases coming off a basic oxygen furnace failed. The system consisted of six precipitators, three separate dual units, each composed of four zones. Each zone contained rows of wires (cold drawn AISI 1008 carbon steel) suspended...
Image
Published: 01 January 2002
Fig. 10 Initial design of the loop on the top end of the precipitator wires. On the left are two loops, one with the 430 stainless steel ferrule removed. On the right is the broken wire inside the ferrule. 9× More
Image
Published: 01 January 2002
Fig. 12 An example of the failed new design for the precipitator wires. 5.5× More
Image
Published: 01 June 2019
Fig. 1 Precipitator wires from a basic oxygen furnace. (a) Original AISI 1008 carbon steel wire, wrapped around an insulator spool and fastened with a ferrule made from type 430 ferritic stainless steel. One ferrule has been removed. (b) Close-up view showing the fractured wire face inside More
Image
Published: 01 June 2019
Fig. 2 Replacement precipitator wires. (a) View of a type 304 replacement precipitator wire and the AISI 1010 tube bent at one end to place over the insulators. The arrows point to the two crimps used to fix the wire in the tube. (b) Close-up view of one of the crimps More
Image
Published: 01 June 2019
Fig. 3 Fractured replacement precipitator wires. (a) View of fractured type 304 precipitator wires. (b) Close-up view of one of the wires. Note the deformation at the inside diameter of the tube due to the motion of the wire. More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001075
EISBN: 978-1-62708-214-3
... Abstract Several type 316L stainless steel wires in an electrostatic precipitator at a paper plant fractured in an unexpectedly short time. Failed wires were examined using optical and scanning electron microscope, and hardness tests were conducted. Fractography clearly established...
Image
Published: 01 December 1992
Fig. 2 Electrostatic precipitator wire configuration coil before installation. More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003520
EISBN: 978-1-62708-180-1
... involved precipitator wires in a wet scrubbing system at a basic oxygen furnace (BOF) shop. There were six sets of wet scrubbing systems, and each had four zones. The data on the wire failure frequency are presented in Table 1 . Basically, wires were hung from porcelain insulators between plates...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048400
EISBN: 978-1-62708-226-6
.... The microstructure of the wire, which was in the soft condition as required, showed signs of sensitization, with chromium carbide precipitates at the grain boundaries ( Fig. 2c ). Typical intercrystalline corrosion with pitted grains was evident through SEM fractography ( Fig. 2d ). Fig. 1 Radiograph showing...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001258
EISBN: 978-1-62708-235-8
... Abstract A drawing plant which processed steel wire of designation 105 Cr 2 for ball bearings had losses due to crack formation and wire breakage during drawing. To establish the reason for the breakage, seven fractures were submitted for investigation with contiguous wire segments on both...
Image
Published: 01 January 2002
content and no molybdenum from investigated implant wire. (c) Cross section of sensitized wire, with grain boundaries and deformation lines heavily attacked by etching because of chromium carbide precipitates. 180×. (d) Fracture surface under scanning electron microscope indicating intercrystalline More
Image
Published: 01 June 2019
content and no molybdenum from investigated implant wire. (c) Cross section of sensitized wire, with grain boundaries and deformation lines heavily attacked by etching because of chromium carbide precipitates. 180x. (d) Fracture surface under scanning electron microscope indicating intercrystalline More
Image
Published: 01 December 1992
Fig. 1 Schematic diagram of an electrostatic precipitator system, showing location of wires. Source: Adapted from Ref 1 . More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001207
EISBN: 978-1-62708-235-8
... Abstract Pipes made of low-carbon Thomas steel had been welded longitudinally employing the carbon-arc process with bare electrode wire made for argon-shielded arc welding. Difficulties were encountered during the cutting of threads because of the presence of hard spots. Microstructural...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001581
EISBN: 978-1-62708-235-8
... tapered end of the profile wire. The exposed wire tensile test exhibited intermediate results due to recrystallization and extensive chromium carbide precipitation present in the material. The solution annealed wire result was as expected for Type 304 stainless steel. 1 The microstructures were...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001119
EISBN: 978-1-62708-214-3
... Abstract To samples of helical compression springs were returned to the manufacturer after failing in service well short of the component design life. Spring design specifications required conformance to SAE J157, “Oil Tempered Chromium Silicon Alloy Steel Wire and Springs.” Each spring...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001104
EISBN: 978-1-62708-214-3
... the intergranular appearance of the fracture surface of some wires. That is, as most of these precipitates occur at grain boundaries, this becomes the weakest area of the structure of the material and the most likely to initiate failure. To overcome these two problems, a material with a higher creep strength...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
...) supported the conclusion that failure of the nozzle weld was the result of intergranular corrosion caused by the pickup of interstitial elements and subsequent precipitation of chromium carbides and nitrides. Carbon pickup was believed to have been caused by inadequate joint cleaning prior to welding...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001770
EISBN: 978-1-62708-241-9
... were subsequently welded over with 308 stainless steel filler wire and the base plate was replaced with new material. Soon after, the tank began leaking along the weld bead, triggering a full-scale investigation; spectroscopy, optical and scanning electron microscopy, fractography, SEM-EDS analysis...