Skip Nav Destination
Close Modal
Search Results for
Posheating
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1 Search Results for
Posheating
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089766
EISBN: 978-1-62708-224-2
... by final machining. Carrier vehicles Chassis Fillet welds Flanges Inclusions Joint design Nonmetallic inclusions Posheating Stress relieving Tubes Welded joints 4140 UNS G41400 1025 UNS G10250 Fatigue fracture Joining-related failures Two tubular steel posts in a carrier vehicle...
Abstract
Two tubular AISI 1025 steel posts (improved design) in a carrier vehicle failed by cracking at the radius of the flange after five weeks of service. The posts were two of four that supported the chassis of the vehicle high above the wheels. The original design involved a flat flange of low-carbon low-alloy steel that was welded to an AISI 1025 steel tube, and the improved design included placing the welded joint of the flange farther away from the flange fillet. Investigation (visual inspection and chemical analysis) supported the conclusion that the failures in the flanges of improved design were attributed to fatigue cracks initiating at the aluminum oxide inclusions in the flange fillet. Recommendations included retaining the improved design of the flange with the weld approximately 50 mm (2 in.) from the fillet, but changing the metal to a forging of AISI 4140 steel, oil quenched and tempered to a hardness of 241 to 285 HRB. Preheating to 370 deg C (700 deg F) before and during welding with AISI 4130 steel wire was specified. It was also recommended that the weld be subjected to magnetic-particle inspection and then stress relieved at 595 deg C (1100 deg F), followed by final machining.