Skip Nav Destination
Close Modal
By
Jigneshkumar P. Patel, Yanika Schneider, Malavarayan Sankarasubramanian, Vidya Jayaram
Search Results for
Polyvinyl chloride
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 56 Search Results for
Polyvinyl chloride
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Ductile Fracture of a Forged Steel Shaft at a Change in Section and at a Stainless Steel Weld
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 1 Stub-shaft assembly, for agitator in a polyvinyl chloride reactor, that failed by ductile fracture. Top left: Configuration and dimensions (given in inches). Detail A: Sections through failure area showing original design, first revised design, and final design Element Chemical
More
Image
in Failure of a PVC Water-Filter Housing
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 Fracture in a polyvinyl chloride water filter. The fracture surface of the fatigue crack started from a fissure (arrow F). The lower dark zone is an artifact due to sectioning of the filter wall. 75×
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047879
EISBN: 978-1-62708-234-1
... Abstract The stub-shaft assembly which was part of the agitator shaft in a polyvinyl chloride reactor, fractured in service after a nut that retained a loose sleeve around the smaller-diam section of the shaft had been tightened several times to reduce leakage. The shaft was made of ASTM A105...
Abstract
The stub-shaft assembly which was part of the agitator shaft in a polyvinyl chloride reactor, fractured in service after a nut that retained a loose sleeve around the smaller-diam section of the shaft had been tightened several times to reduce leakage. The shaft was made of ASTM A105, grade 2 steel, and the larger-diam section was covered with a type 316 stainless steel end cap. The cap was welded to each end using type ER316 stainless steel filler metal. The forged steel shaft was revealed to have fractured at approximately 90 deg to the shaft axis in the weld metal and not in the heat-affected zone of the forged steel shaft. Microscopic investigation and chemical analysis of the steel shaft revealed presence of martensite (offered a path of easy crack propagation) around the fusion line and dilution of the weld metal by the carbon steel shaft. The microstructure was found to be martensitic as the fusion line was approached. The forged steel shaft was concluded to have failed by ductile fracture and possible reasons were discussed. Corrective measures adopted in the replacement shaft were specified.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090439
EISBN: 978-1-62708-220-4
... Abstract A section of clear polymeric tubing failed while in service. The failed sample had been used in a chemical transport application. The tubing had also been exposed to periods of elevated temperature as part of the operation. The tubing was specified to be a polyvinyl chloride (PVC...
Abstract
A section of clear polymeric tubing failed while in service. The failed sample had been used in a chemical transport application. The tubing had also been exposed to periods of elevated temperature as part of the operation. The tubing was specified to be a polyvinyl chloride (PVC) resin plasticized with trioctyl trimellitate. Investigation included visual inspection, micro-FTIR in the ATR mode, and thermogravimetric analysis. The spectrum on the failed tubing exhibited absorption bands indicative of a PVC resin containing an adipate-based plasticizer. Thermograms of the failed pieces and a reference sample of tubing that performed well showed that the reference material contained a trimellitate-based plasticizer and that the failed material contained an adipate-based material. The conclusion was that the failed tubing had been produced from a formulation that did not comply with the specified material and, as a result, was not as thermally stable as the reference material.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0090909
EISBN: 978-1-62708-235-8
... fissure was believed to have started first due to residual stresses developed during injection molding. No recommendations were made. Housings Injection molding Residual stresses Water filters Polyvinyl chloride Fatigue fracture Figure 1 shows an injection-molded PVC water-filter housing...
Abstract
An injection-molded PVC water-filter housing fractured in service. 75x views and visual inspection supported the conclusion that failure occurred due to fatigue crack propagation, as indicated by the presence of discontinuous crack-growth bands and their evolution. However, an initial fissure was believed to have started first due to residual stresses developed during injection molding. No recommendations were made.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006945
EISBN: 978-1-62708-395-9
... alcohol polyvinyl acetate polyvinyl alcohol polyvinyl butyral polyvinyl chloride polyvinylidene chloride polyvinylidene uoride polyvinyl formal; polyvinyl uoride polyvinyl formal polyvinyl alcohol reduction of area radio frequency residual gas analysis reaction injection molding risk priority number...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001351
EISBN: 978-1-62708-215-0
... is about 170 HV. The bellows had been stored in polyvinyl chloride (PVC) bags for about 1 year after procurement. Helium leak testing revealed numerous leaks. Although the leak rates were very small (i.e., of the order of 10 −6 to 10 −7 cm 3 /s, or 6 × 10 −7 to 6 × 10 −8 in. 3 /s), the bellows were...
Abstract
A number of AISI 347 stainless steel bellows intended for use in the control rod drive mechanism of a fast breeder reactor were found to be leaking before being placed in service. The bellows, which had been in storage for one year in a seacoast environment, exhibited a leak rate on the order of 1 x 10−7 cu cm/s (6 x 10−8 cu in./s). Optical metallography revealed numerous pits and cracks on the surfaces of the bellow convolutes, which had been welded to one another using an autogenous gas tungsten arc welding process. Microhardness measurements indicated that the bellows had not been adequately stress relieved. It was recommended that a complete stress-relieving treatment be applied to the formed bellows. Improvement of storage conditions to avoid direct and prolonged contact of the bellows with the humid, chloride-containing environment was also recommended.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006849
EISBN: 978-1-62708-395-9
...’ of polyvinyl chloride blends; MW A = 58 × 10 4 ; MW B = 5.9 × 10 4 Fig. 15 Development of polyvinyl chloride master curve Fig. 16 Dynamic mechanical properties of solids. (a) Torsion, (b) tension, (c) bending, and (d) compression Fig. 17 Dynamic mechanical properties...
Abstract
This article addresses some established protocols for characterizing thermoplastics and whether they are homogeneous resins, alloyed, or blended compositions or highly modified thermoplastic composites. It begins with a discussion on characterizing mechanical, rheological, and thermal properties of polymer. This is followed by a section describing molecular weight determination using viscosity measurements. Next, the article discusses the use of cone and plate and parallel plate geometries in melt rheology. It then reviews the processes involved in the analysis of thermoplastic resins by chromatography. Finally, the article covers three operations of thermoanalysis, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001528
EISBN: 978-1-62708-219-8
... no definitive match with the FTIR spectrum for the black foam insulation, probably because of its complex composition. Portions of the spectrum match aluminum hydroxide (consistent with the high aluminum observed in the EDS spectrum), polybutadiene (a rubber), and polyvinyl chloride (PVC). The FTIR spectrum...
Abstract
A 5000-gal (20,000-L) hot-water holding tank fractured at a large automotive manufacturing plant. The tank was made from Type 304 austenitic stainless steel. The inner diameter of the tank displayed a macroscopic, web-like network of cracks that deceptively suggested intergranular stress-corrosion cracking. The problem, however, originated on the outside surface of the tank where a tensile stress (due to low applied stress and fabrication-induced residual stresses) accelerated the growth of numerous stress corrosion cracks that eventually broke through to the inner surface, causing leakage and ultimately failure.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
... Cellulose nitrate (celluloid) CP Cellulose propionate (propionate) CPVC Chlorinated polyvinyl chloride CPE Chlorinated polyethylene CS Casein CTA Cellulose triacetate (triacetate) CTFE Polymonochlorotrifluoroethylene DAP Poly(diallyl phthalate) DMC Dough molding compound...
Abstract
This introductory article describes the various aspects of chemical structure that are important to an understanding of polymer properties and thus their eventual effect on the end-use performance of engineering plastics. The polymers covered include hydrocarbon polymers, carbon-chain polymers, heterochain polymers, and polymers containing aromatic rings. The article also includes some general information on the classification and naming of polymers and plastics. The most important properties of polymers, namely, thermal, mechanical, chemical, electrical, and optical properties, and the most significant influences of structure on those properties are then discussed. A variety of engineering thermoplastics, including some that are regarded as high-performance thermoplastics, are covered in this article. In addition, a few examples of commodity thermoplastics and biodegradable thermoplastics are presented for comparison. Finally, the properties and applications of six common thermosets are briefly considered.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
...; PVC, polyvinyl chloride; PA, polyamide; PI, polyimide; PET, polyethylene terephthalate. Dacron, E.I. DuPont de Nemours & Co. Practical information derived from polymer analysis methods Table 2 Practical information derived from polymer analysis methods Test method Property...
Abstract
This article presents tools, techniques, and procedures that engineers and material scientists can use to investigate plastic part failures. It also provides a brief survey of polymer systems and the key properties that need to be measured during failure analysis. It describes the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing crystal phases and structures in solid materials.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
... 140 264 507 80 11.6 Polybutylene terephthalate (PBT) 60 140 232 450 52 7.5 Polyethylene terephthalate (PET) 69 156 265 509 72 10.4 Polyvinyl chloride (PVC) 80, 87 176, 189 212 414 55 8.0 Polyvinyl alcohol (PVOH) 85 185 T d < T m (b) T d < T m (b...
Abstract
This article provides practical information and data on property development in engineering plastics. It discusses the effects of composition on submolecular and higher-order structure and the influence of plasticizers, additives, and blowing agents. It examines stress-strain curves corresponding to soft-and-weak, soft-and-tough, hard-and-brittle, and hard-and-tough plastics and temperature-modulus plots representative of polymers with different degrees of crystallinity, cross-linking, and polarity. It explains how viscosity varies with shear rate in polymer melts and how processes align with various regions of the viscosity curve. It discusses the concept of shear sensitivity, the nature of viscoelastic properties, and the electrical, chemical, and optical properties of different plastics. It also reviews plastic processing operations, including extrusion, injection molding, and thermoforming, and addresses related considerations such as melt viscosity and melt strength, crystallization, orientation, die swell, melt fracture, shrinkage, molded-in stress, and polymer degradation.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003541
EISBN: 978-1-62708-180-1
..., or brittle failure. Therefore, design limitation and product failure for some plastics may be associated with stress crazing, stress cracking, or stress whitening. This is shown in Fig. 5 by a set of time-dependent stress curves for unplasticized polyvinyl chloride (PVC). The upper line indicates ductile...
Abstract
This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals. It provides information on deformation, fracture, and crack propagation as well as the fractography involving the examination and interpretation of fracture surfaces, to determine the cause of failure. The fracture modes such as ductile fractures and brittle fractures are reviewed. The article also presents a detailed account of various fracture surface features. It concludes with several cases of field failure in various polymers that illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
... 212, 220 240 465 Nonhydrocarbon carbon-chain thermoplastics Polyvinyl chloride (vinyl) 87 190 212 415 Polyvinyl fluoride −20 −5 200 390 Polyvinylidene chloride −17 1 198 390 Polyvinylidene fluoride −35 −30 … … Polytetrafluoroethylene −97, 126 −140, 260 327 620...
Abstract
This article discusses the thermal properties of engineering plastics and elastomers with respect to chemical composition, chain configuration, and base polymer conformation as determined by thermal analysis. It describes the processing of base polymers with or without additives and their response to chemical, physical, and mechanical stresses whether as an unfilled, shaped article or as a component of a composite structure. It summarizes the basic thermal properties of thermoplastics and thermosets, including thermal conductivity, temperature resistance, thermal expansion, specific heat, and glass transition temperature. It also provides information on polyimide and bismaleimide resin systems. Representative examples of different types of engineering thermoplastics are discussed primarily in terms of structure and thermal properties.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
... and nonphthalate types of plasticizers Types of plasticizers Chemical composition Commercial name Application Phthalates Di- n -butylphthalates (DBP) Palatinol C (BASF Corp.) KLJ-DBP (KLJ Group) Polyvinyl chloride (PVC), rubber, bioplastic, cellulosic polymers Dioctyl phthalate (DOP) Eastman...
Abstract
Polymer materials are key building blocks of the modern world, commonly used in packaging, automobiles, building materials, electronics, telecommunications, and many other industries. These commercial applications of polymeric materials would not be possible without the use of additives. This article is divided into five sections: mechanical property modifiers, physical property modifiers, biological function modifiers, processing aids, and colorants. It describes three classes of additives that are used to inhibit biological activity, six classes of mechanical property modifiers, three classes of physical property modifiers, and two classes of both colorants and processing aids.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001808
EISBN: 978-1-62708-241-9
.... The disinfectants and the solvents used by the laboratory would be the determining factors in whether a polymer or metal can be chosen as the replacement material. Highly polymerized polymers, such as PVC (polyvinyl chloride), have been documented with resistance to bacterial attack [ 7 ]. Another possible...
Abstract
Six cases of failure attributed to microbiologically influenced corrosion (MIC) were analyzed to determine if any of the failures could have been avoided or at least predicted. The failures represent a diversity of applications involving typical materials, primarily stainless steel and copper alloys, in contact with a variety of liquids, chemistries, and substances. Analytical techniques employed include stereoscopic examination, energy dispersive x-ray spectroscopy (EDS), temperature and pH testing, and metallographic analysis. The findings indicate that MIC is frequently the result of poor operations or improper materials selection, and thus often preventable.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
...(a) 68 Polyethylene terephthalate(a) 65 Polyphenylene sulfide(a) 49 Polyethylene, branched(a) 100–220 Polypropylene(a) 81–100 Polystyrene(a) 50–83 Polyvinyl chloride(a) 50–100 Glass(b) 8.3–9.7 Gold(b) 14.3 Cast iron(b) 10.6 Carbon graphite(b) 7.9 Hardened...
Abstract
Engineering plastics, as a general class of materials, are prone to the development of internal stresses which arise during processing or during servicing when parts are exposed to environments that impose deformation and/or temperature extremes. Thermal stresses are largely a consequence of high coefficients of thermal expansion and low thermal diffusivities. Although time-consuming techniques can be used to analyze thermal stresses, several useful qualitative tests are described in this article. The classification of internal stresses in plastic parts is covered. The article describes the effects of low thermal diffusivity and high thermal expansion properties, and the variation of mechanical properties with temperature. It discusses the combined effects of thermal stresses and orientation that result from processing conditions. The article also describes the effect of aging on properties of plastics. It explains the use of high-modulus graphite fibers in amorphous polymers.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006914
EISBN: 978-1-62708-395-9
... Polyvinyl chloride (PVC) 391 736 454 849 Polyvinylidene chloride (PVDC) 532 990 532 990 Polystyrene (PS) 345–360 653–680 488–496 910–925 Acrylonitrile-butadiene-styrene (ABS) … … 466 871 Polymethylmethacrylate (PMMA) 280–300 536–572 450–462 842–864 Polycarbonate (PC) 375...
Abstract
A material is flammable if it is subject to easy ignition and rapidly flaming combustion. The plastics that are most widely used are the least expensive and tend to be the most flammable. This article describes the two basic approaches to improving the fire resistance of a polymeric material: modifying or substituting the basic polymer so that exposure to heat and oxygen will not produce rapid combustion, and using flame-retardant additives. It also provides an overview of the burning process and presents two flammability test methods.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006865
EISBN: 978-1-62708-395-9
...Relative resistance of common polymers to photodegradation Table 1 Relative resistance of common polymers to photodegradation Polymer Relative resistance Polymethyl methacrylate n Polyacrylonitrile n Polyoxymethylene m Polyethylene m Polyvinyl chloride n...
Abstract
This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals, including plastic deformation. It provides overviews of crack propagation and fractography. The article presents the distinction between ductile and brittle fracture modes. Several case studies of field failure in various polymers are also presented to illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
... of a polyvinyl chloride specimen fractured by impact at liquid temperature, showing rocklike fracture. (a) Original magnification: 500×. (b) Original magnification: 1500× Fig. 43 SEM fractographs of a polyvinyl chloride specimen fractured by impact at ambient temperature, showing the presence...
1