Skip Nav Destination
Close Modal
Search Results for
Polycarbonate
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 62 Search Results for
Polycarbonate
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0090463
EISBN: 978-1-62708-234-1
... contributing factor was the design of the part, which produced significant interference stresses between the contact and a mating retaining tab. Creep strength Housings Polycarbonate Brittle fracture A housing used in conjunction with an electrical switch failed shortly after being placed...
Abstract
A housing used in conjunction with an electrical switch failed shortly after being placed into service. A relatively high failure rate had been encountered, corresponding to a recent production lot of the housings, and the failed part was representative of the problem. The housing had been injection molded from a commercially available, medium-viscosity grade of PC, formulated with an ultraviolet stabilizer. In addition to the PC housing, the design of the switch included an external protective zinc component installed with a snap-fit and two retained copper press-fit contact inserts. Investigation supported the conclusion that the switch housings failed via brittle fracture, likely through a creep mechanism. The failure was caused by severe embrittlement of the housing resin associated with massive molecular degradation produced during the molding process. A potential contributing factor was the design of the part, which produced significant interference stresses between the contact and a mating retaining tab.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090448
EISBN: 978-1-62708-222-8
... Abstract Housings (being tested as part of a material conversion) from an electrical appliance failed during an engineering evaluation. They had been injection molded from a commercial polycarbonate/PET blend. Parts produced from the previous material, a nylon 6/6 resin, had consistently passed...
Abstract
Housings (being tested as part of a material conversion) from an electrical appliance failed during an engineering evaluation. They had been injection molded from a commercial polycarbonate/PET blend. Parts produced from the previous material, a nylon 6/6 resin, had consistently passed the testing regimen. Grease was applied liberally within the housing assembly during production. Investigation included visual inspection, 24x SEM images, micro-FTIR in the ATR mode, and analysis using DSC. No signs of material contamination were found, but the thermograms showed a crystallization of the PET resin. The grease present within the housing assembly, analyzed using micro-FTIR, was composed of a hydrocarbon-based oil, a phthalate-based oil, lithium stearate, and an amide-based additive. The conclusion was that the appliance housings failed through environmental stress cracking caused by a phthalate-based oil that was not compatible with the PC portion of the resin blend. Thus, the resin conversion was the root cause of the failures. Additionally, during the injection molding process the molded parts had been undercrystallized, reducing their mechanical strength. More importantly, the resin had been degraded, producing a reduction in the molecular weight and reducing both the mechanical integrity and chemical-resistance properties of the parts.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090424
EISBN: 978-1-62708-222-8
... Abstract A plastic bracket exhibited relatively brittle material properties, which ultimately led to catastrophic failure. The part had been injection molded from a medium-viscosity polycarbonate resin and had been in service for a short duration prior to the failure. Investigation (visual...
Abstract
A plastic bracket exhibited relatively brittle material properties, which ultimately led to catastrophic failure. The part had been injection molded from a medium-viscosity polycarbonate resin and had been in service for a short duration prior to the failure. Investigation (visual inspection and analysis using micro-FTIR in the ATR mode) revealed the spectrum showed changes in the relative intensities of several bands, as compared to the results representing the base material. A spectral subtraction was performed, and the results produced a good match with diphenyl carbonate, which is a common breakdown product produced during the decomposition of polycarbonate. The conclusion was that the most likely cause of the molecular degradation was improper drying and/or exposure to excessive heat during the injection molding process that in turn caused the material degradation.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001278
EISBN: 978-1-62708-215-0
... Fig. 1 Typical new polycarbonate ophthalmic lenses exhibited well polished surfaces. Approximately 0.55×. Fig. 2 The failed polycarbonate ophthalmic lenses exhibited primary and secondary cracks which were associated with solvent swelling and crazing. Approximately 0.55×. Fig...
Abstract
Metal-framed polycarbonate (PC) ophthalmic lenses shattered from acetone solvent-induced cracking. The lenses exhibited primary and secondary cracks with solvent swelling and crazing. A laboratory accident splashed acetone onto the lenses. The metal frames gripped approximately two-thirds of the lenses' periphery and introduced an unevenly distributed force on the lenses. To prevent future failures, it was recommended to protect PC from service environments with solvents, such as acetone; or from marking pens, adhesives or soaps which contain undesirable solvents; and to not apply excessive stress on ophthalmic lenses in the form of working or residual stresses.
Image
in Solvent-Induced Cracking Failure of Polycarbonate Ophthalmic Lenses
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 1 Typical new polycarbonate ophthalmic lenses exhibited well polished surfaces. Approximately 0.55×.
More
Image
in Solvent-Induced Cracking Failure of Polycarbonate Ophthalmic Lenses
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 2 The failed polycarbonate ophthalmic lenses exhibited primary and secondary cracks which were associated with solvent swelling and crazing. Approximately 0.55×.
More
Image
in Solvent-Induced Cracking Failure of Polycarbonate Ophthalmic Lenses
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 4 A Fourier-transform infrared (FTIR) analysis of a reference polycarbonate sample.
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006918
EISBN: 978-1-62708-395-9
... Ultrahigh-molecular-weight polyethylene Decreasing Low-density polyethylene Polyvinyl chloride Low-molecular-weight PMMA Rubber-toughened PMMA High-impact polystyrene Acrylonitrile-butadiene-styrene Polycarbonate Toughened polycarbonate copolyester Polyetheretherketone...
Abstract
This article reviews generalized test methodologies for fatigue characterization of polymers and examines fatigue fracture mechanisms in different engineering plastics. It provides detailed micromechanistic images of crack-tip processes for a variety of semicrystalline and amorphous engineering polymers. The article describes fracture mechanics solutions and approaches to the fatigue characterization of engineering polymers when dealing with macroscale fatigue crack growth. It includes mechanistic images for high-density polyethylene, ultrahigh-molecular-weight polyethylene, nylon 6, 6, polycarbonate, and polypropylene. The article describes the micromechanisms of toughening of plastics and uses a macroscale approach of applying fracture mechanics to the fatigue life prediction of engineering polymers, building on the mechanistic concepts. It also describes the factors affecting fatigue performance of polymers.
Image
in Embrittlement of a Polycarbonate Bracket
> ASM Failure Analysis Case Histories: Household Products and Consumer Goods
Published: 01 June 2019
Fig. 1 The FTIR spectrum obtained on the bracket base material, exhibiting absorption bands characteristic of polycarbonate
More
Image
in Solvent-Induced Cracking Failure of Polycarbonate Ophthalmic Lenses
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 3 The failed ophthalmic lenses were verified to be the specified polycarbonate material by Fourier-transform infrared (FTIR) analysis.
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006920
EISBN: 978-1-62708-395-9
... hydroxyl groups or with ester groups by hydrogen bonding Fig. 10 General dehydrochlorination of polyvinyl chloride Fig. 11 Photooxidation of polyenes (photobleaching) Fig. 12 Direct photolysis of polycarbonates (aromatic part) Fig. 13 Induced photooxidation...
Abstract
This article describes the processes involved in photochemical aging and weathering of polymeric materials. It explains how solar radiation, especially in the UV range, combines with atmospheric oxygen, driving photooxidation and the development of unstable photoproducts that cause various types of damage when they decompose, including the scission of carbon bonds and polymer chains. The article illustrates some of the degradation reactions that occur in different polymers and presents an overview of the strategies used to prevent such reactions or otherwise mitigate their effects.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006865
EISBN: 978-1-62708-395-9
... Polystyrene w Nylon 6 m Polypropylene vs Polycarbonate s Polyurethane m Polysulfone s Polyphenylene oxide s m, moderate; n, not significant deterioration; s, severe; vs, very severe w, weak; Bond energies for various materials Table 2 Bond energies for various materials...
Abstract
This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals, including plastic deformation. It provides overviews of crack propagation and fractography. The article presents the distinction between ductile and brittle fracture modes. Several case studies of field failure in various polymers are also presented to illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... Nylon 66 10% Glass 96.39 (13,980) 90.05 (13,060) 93 Nylon 66 30% Glass 166.85 (24,200) 101.77 (14,760) 61 Nylon 66 40% Glass 198.71 (28,820) 103.35 (14,990) 52 Polycarbonate None 62.74 (9100) 62.26 (9030) 99 Polycarbonate 10% Glass 81.36 (11,800) 70.33 (10,200) 86...
Abstract
There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product. This article reviews the numerous considerations that are equally important to help ensure that part failure does not occur. It provides a quick review of thermoplastic and thermoset plastics. The article focuses primarily on thermoset materials that at room temperature are below their glass transition temperature. It describes the motivation for material selection and the goal of the material selection process. The use of material datasheets for material selection as well as the processes involved in plastic material selection and post material selection is also covered.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003541
EISBN: 978-1-62708-180-1
... significantly influence creep data. Consider the temperature effect on the isochronous creep plot for polycarbonate (PC) ( Fig. 7 ). As expected, the overall creep effect increases with increasing temperature. The crazing boundary is also influenced by temperature ( Fig. 7 ). Fig. 6 A 1000 h creep...
Abstract
This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals. It provides information on deformation, fracture, and crack propagation as well as the fractography involving the examination and interpretation of fracture surfaces, to determine the cause of failure. The fracture modes such as ductile fractures and brittle fractures are reviewed. The article also presents a detailed account of various fracture surface features. It concludes with several cases of field failure in various polymers that illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006926
EISBN: 978-1-62708-395-9
... of Environment on the Stress Crazing of Polycarbonate , J. Mater. Sci. , Vol 13 , 1978 , p 2037 10.1007/BF00552912 36. Kambour R.P. , A Review of Crazing and Fracture in Thermoplastics , J. Polym. Sci. D, Macromol. Rev. , Vol 7 , 1973 , p 1 10.1002/pol.1973.230070101 37. Vincent...
Abstract
The susceptibility of plastics to environmental failure, when exposed to organic chemicals, can limit their use in many applications. A combination of chemical and physical factors, along with stress, usually leads to a serious deterioration in properties, even if stress or the chemical environment alone may not appreciably weaken a material. This phenomenon is referred to as environmental stress cracking (ESC). The ESC failure mechanism for a particular plastics-chemical environment combination can be quite complex and, in many cases, is not yet fully understood. This article focuses on two environmental factors that contribute to failure of plastics, namely chemical and physical effects.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006928
EISBN: 978-1-62708-395-9
... plastics Material Heat-deflection temperature at 1.82 MPa (0.264 ksi) UL index °C °F °C °F Acrylonitrile-butadiene-styrene (ABS) 99 210 60 140 ABS-polycarbonate alloy (ABS-PC) 115 240 60 140 Diallyl phthalate (DAP) 285 545 130 265 Polyoxymethylene (POM...
Abstract
This article briefly introduces some commonly used methods for mechanical testing. It describes the test methods and provides comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are also briefly described. The article discusses the processes involved in the short-term and long-term tensile testing of plastics. Information on the strength/modulus and deflection tests, impact toughness, hardness testing, and fatigue testing of plastics is also provided. The article describes tension testing of elastomers and fibers. It covers two basic methods to test the mechanical properties of fibers, namely the single-filament tension test and the tensile test of a yarn or a group of fibers.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006940
EISBN: 978-1-62708-395-9
... Side view of a crack associated with a crowd of crazes in a fatigued single-edge notch of 0.25 mm (0.10 in.) thick polystyrene Fig. 10 Crack propagation through a craze surrounded by a pair of shear bands (an epsilon crack) in polycarbonate. Source: Ref 45 Fig. 12 An S-shaped...
Abstract
Failure of structural polymeric materials under cyclic application of stress or strain is a subject of industrial importance. The understanding of fatigue mechanisms (damage) and the development of constitutive equations for damage evolution, leading to crack initiation and propagation as a function of loading or displacement history, represent a fundamental problem for scientists and engineers. This article describes the approaches to predict fatigue life and discusses the difference between thermal and mechanical fatigue failure of polymers.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006919
EISBN: 978-1-62708-395-9
... B B Rigid polyvinyl chloride B B B B B B C C Polyphenylene oxide B B B B B B C C Acrylonitrile-butadiene-styrene B B B B B B C C Polycarbonate B B B B C C C C Nylon (wet) B B B C C C C C Polytetrafluoroethylene B C C C C C C C Low...
Abstract
This article reviews the impact response of plastic components and the various methods used to evaluate it.. It describes the effects of loading rate on polymer deformation and the influence of temperature and strain rate on failure mode. It discusses the advantages and limitations of standard impact tests, the use of puncture tests for assessing material behavior under extreme strain, and the application of fracture mechanics for analyzing impact failures. It also develops and demonstrates the theory involved in the design and analysis of thin-walled, injection-molded plastic components.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006917
EISBN: 978-1-62708-395-9
...) Polycarbonate (PC) Poly(ester)carbonate (PCC) Poly(carbonate-siloxane) Poly(methyl methacrylate-acrylonitrile-butadiene-styrene) (MABS) Nylon 6-3-T (PA63T) Nylon 6I/6T (PA6I6T) Polysulfone (PSU) Polyphenylsulfone (PPSU) Polyethersulfone (PESU) Polyether-imide (PEI) Polyvinyl...
Abstract
While there are many fracture mechanisms that can lead to the failure of a plastic component, environmental stress cracking (ESC) is recognized as one of the leading causes of plastic failure. This article focuses on unpacking the basic concepts of ESC to provide the engineer with a better understanding of how to evaluate and prevent it. It then presents factors that affect and contribute to the susceptibility of plastic to ESC: material factors, chemical factors, stress, and environmental factors. The article includes the collection of background information to understand the circumstances surrounding the failure, a fractographic evaluation to assess the cracking, and analytical testing to evaluate the material, design, manufacturing, and environmental factors.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
...Linear coefficients of thermal expansion (CTEs) Table 1 Linear coefficients of thermal expansion (CTEs) Material 10 −6 /K Polymethyl methacrylate(a) 50–90 Polyacrylonitrile(a) 66 Cellulose acetate(a) 100–150 Nylon 6(a) 80–83 Nylon 11(a) 100 Polycarbonate...
Abstract
Engineering plastics, as a general class of materials, are prone to the development of internal stresses which arise during processing or during servicing when parts are exposed to environments that impose deformation and/or temperature extremes. Thermal stresses are largely a consequence of high coefficients of thermal expansion and low thermal diffusivities. Although time-consuming techniques can be used to analyze thermal stresses, several useful qualitative tests are described in this article. The classification of internal stresses in plastic parts is covered. The article describes the effects of low thermal diffusivity and high thermal expansion properties, and the variation of mechanical properties with temperature. It discusses the combined effects of thermal stresses and orientation that result from processing conditions. The article also describes the effect of aging on properties of plastics. It explains the use of high-modulus graphite fibers in amorphous polymers.
1