Skip Nav Destination
Close Modal
Search Results for
Polycarbonate
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 135 Search Results for
Polycarbonate
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0090463
EISBN: 978-1-62708-234-1
... contributing factor was the design of the part, which produced significant interference stresses between the contact and a mating retaining tab. Creep strength Housings Polycarbonate Brittle fracture A housing used in conjunction with an electrical switch failed shortly after being placed...
Abstract
A housing used in conjunction with an electrical switch failed shortly after being placed into service. A relatively high failure rate had been encountered, corresponding to a recent production lot of the housings, and the failed part was representative of the problem. The housing had been injection molded from a commercially available, medium-viscosity grade of PC, formulated with an ultraviolet stabilizer. In addition to the PC housing, the design of the switch included an external protective zinc component installed with a snap-fit and two retained copper press-fit contact inserts. Investigation supported the conclusion that the switch housings failed via brittle fracture, likely through a creep mechanism. The failure was caused by severe embrittlement of the housing resin associated with massive molecular degradation produced during the molding process. A potential contributing factor was the design of the part, which produced significant interference stresses between the contact and a mating retaining tab.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090448
EISBN: 978-1-62708-222-8
... Abstract Housings (being tested as part of a material conversion) from an electrical appliance failed during an engineering evaluation. They had been injection molded from a commercial polycarbonate/PET blend. Parts produced from the previous material, a nylon 6/6 resin, had consistently passed...
Abstract
Housings (being tested as part of a material conversion) from an electrical appliance failed during an engineering evaluation. They had been injection molded from a commercial polycarbonate/PET blend. Parts produced from the previous material, a nylon 6/6 resin, had consistently passed the testing regimen. Grease was applied liberally within the housing assembly during production. Investigation included visual inspection, 24x SEM images, micro-FTIR in the ATR mode, and analysis using DSC. No signs of material contamination were found, but the thermograms showed a crystallization of the PET resin. The grease present within the housing assembly, analyzed using micro-FTIR, was composed of a hydrocarbon-based oil, a phthalate-based oil, lithium stearate, and an amide-based additive. The conclusion was that the appliance housings failed through environmental stress cracking caused by a phthalate-based oil that was not compatible with the PC portion of the resin blend. Thus, the resin conversion was the root cause of the failures. Additionally, during the injection molding process the molded parts had been undercrystallized, reducing their mechanical strength. More importantly, the resin had been degraded, producing a reduction in the molecular weight and reducing both the mechanical integrity and chemical-resistance properties of the parts.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090424
EISBN: 978-1-62708-222-8
... Abstract A plastic bracket exhibited relatively brittle material properties, which ultimately led to catastrophic failure. The part had been injection molded from a medium-viscosity polycarbonate resin and had been in service for a short duration prior to the failure. Investigation (visual...
Abstract
A plastic bracket exhibited relatively brittle material properties, which ultimately led to catastrophic failure. The part had been injection molded from a medium-viscosity polycarbonate resin and had been in service for a short duration prior to the failure. Investigation (visual inspection and analysis using micro-FTIR in the ATR mode) revealed the spectrum showed changes in the relative intensities of several bands, as compared to the results representing the base material. A spectral subtraction was performed, and the results produced a good match with diphenyl carbonate, which is a common breakdown product produced during the decomposition of polycarbonate. The conclusion was that the most likely cause of the molecular degradation was improper drying and/or exposure to excessive heat during the injection molding process that in turn caused the material degradation.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001278
EISBN: 978-1-62708-215-0
... Abstract Metal-framed polycarbonate (PC) ophthalmic lenses shattered from acetone solvent-induced cracking. The lenses exhibited primary and secondary cracks with solvent swelling and crazing. A laboratory accident splashed acetone onto the lenses. The metal frames gripped approximately two...
Abstract
Metal-framed polycarbonate (PC) ophthalmic lenses shattered from acetone solvent-induced cracking. The lenses exhibited primary and secondary cracks with solvent swelling and crazing. A laboratory accident splashed acetone onto the lenses. The metal frames gripped approximately two-thirds of the lenses' periphery and introduced an unevenly distributed force on the lenses. To prevent future failures, it was recommended to protect PC from service environments with solvents, such as acetone; or from marking pens, adhesives or soaps which contain undesirable solvents; and to not apply excessive stress on ophthalmic lenses in the form of working or residual stresses.
Image
Published: 01 January 2002
Fig. 19 Craze formation in a polycarbonate polymer in tension under alcohol. Source: Ref 37
More
Image
Published: 01 January 2002
Fig. 29 Low-magnification view of fracture origin area of polycarbonate impact test specimen. Curved Wallner lines, formed by interaction between the rapidly progressing crack front and dynamic stress waves, are reminiscent of beach marks but do not indicate progressive fatigue fracture
More
Image
Published: 01 January 2002
Fig. 51 Features observed on fatigue area of polycarbonate rotating beam specimen. (a) Optical view at base of notch. (b) Higher magnification electron fractograph. Sample was sputter coated with platinum for SEM examination.
More
Image
Published: 01 January 2002
Fig. 7 Isochronous plot of polycarbonate stress-strain behavior as a function of temperature. Note that the crazing locus decreases in strain value with increasing temperature. (a) 23 °C (73.5 °F). Relative humidity, 50%. (b) 40 °C (104 °F). (c) 80 °C (176 °F). (d) 100 °C (212 °F). Courtesy
More
Image
Published: 01 January 2002
Fig. 10 Failed polycarbonate lenses exhibited primary and secondary cracking associated with solvent swelling and cracking
More
Image
Published: 01 January 2002
Fig. 17 Shrinkage void on field fracture surface of polycarbonate. 12×
More
Image
Published: 01 January 2002
Fig. 18 Polycarbonate fracture surface showing mirror zone, mist and hackle regions, and Wallner lines. 14×
More
Image
Published: 01 January 2002
Fig. 19 Fracture initiation region of polycarbonate specimen after Izod impact showing mirror zone and mist region. 27×
More
Image
Published: 01 January 2002
Fig. 21 Hackle region in final ligament of polycarbonate specimen after Izod impact. 14×
More
Image
Published: 01 January 2002
Fig. 24 Fatigue striations on the fracture surface of a polycarbonate plumbing fixture after field failure. 32×
More
Image
Published: 15 January 2021
Fig. 20 Craze formation in a polycarbonate polymer in tension under alcohol. Source: Ref 13
More
Image
Published: 15 January 2021
Fig. 29 Low-magnification view of fracture origin area of polycarbonate impact test specimen. Curved Wallner lines, formed by interaction between the rapidly progressing crack front and dynamic stress waves, are reminiscent of beach marks but do not indicate progressive fatigue fracture
More
Image
Published: 15 January 2021
Fig. 51 Features observed on fatigue area of polycarbonate rotating-beam specimen. (a) Optical view at base of notch. (b) Higher-magnification electron fractograph. Sample was sputter coated with platinum for scanning electron microscopy examination.
More
Image
Published: 15 May 2022
Fig. 8 Isochronous creep plot of polycarbonate stress–strain behavior as a function of temperature. Note that the crazing locus decreases in strain value with increasing temperature. (a) 23 °C (73.5 °F). Relative humidity, 50%. (b) 40 °C (104 °F). (c) 80 °C (176 °F). (d) 100 °C (212 °F
More
Image
Published: 15 May 2022
Fig. 17 Birefringence and Wallner lines on fracture in a polycarbonate material. Courtesy of Engineering Systems, Inc.
More
Image
Published: 15 May 2022
Fig. 18 Shrinkage void on field fracture surface of polycarbonate. 12×
More
1