Skip Nav Destination
Close Modal
Search Results for
Plastic bending
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 196 Search Results for
Plastic bending
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 15 May 2022
Fig. 10 Optical images of crazing in bend specimens using phthalate plasticizer on the top surface of the specimen; (a) crazes in PMMA polymer, (b) crazes in PET polymer
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046015
EISBN: 978-1-62708-235-8
... of the T-sections; however, this condition was not a primary cause of failure. Extension ladders Extrusions 6061-T6 UNS A96061 Metalworking-related failures Ductile fracture Plastic bending A two-section aluminum extension ladder, owned by the fire department of a large city, broke...
Abstract
A two-section extension ladder, made from 6061-T6 aluminum alloy extrusions and stampings that were riveted together at each rung location and at the ends of side rails, broke in service after having been used at the sites of several fires by the fire department of a large city. The fracture surfaces were examined visually and by optical (light) stereomicroscopy. Material testing showed a sample to be within the specified material limits for aluminum alloy 6061. Microscopic examination showed no significant differences in microstructure or grain size among the four T-sections, and thickness measurements at various locations indicated that thicknesses were well within standard industry tolerances for aluminum extrusions in this size range. However, hardness testing of the four T-sections showed that in two, hardness was considerably lower than the acceptable hardness for the T6 temper and were within the range for 6061-T4 (acceptable hardness, 19 to 45 HRB). This indicated they had been naturally aged at room temperature after solution heat treatment instead of artificially aged as per specs. Edge cracking in two of the T-sections was the result of improper conditions during extrusion of the T-sections; however, this condition was not a primary cause of failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001802
EISBN: 978-1-62708-241-9
... and lower strains in compression compared to tension. Therefore, for a given input global bending strain, plastic deformation will occur at lower strains in compression than in tension. At high compressive strains, an outer fiber of severely plastically deformed material will exist at the intrados...
Abstract
Superelastic nitinol wires that fractured under various conditions were examined under a scanning electron microscope in order to characterize the fracture surfaces, produce reference data, and compare the findings with prior published work. The study revealed that nitinol fracture modes and morphologies are generally consistent with those of ductile metals, such as austenitic stainless steel, with one exception: Nitinol exhibits a unique damage mechanism under high bending strain, where damage occurs at the compression side of tight bends or kinks while the tensile side is unaffected. The damage begins as slip line formation due to plastic deformation, which progresses to cracking at high strain levels. The cracks appear to initiate from slip lines and extend in shear (mode II) manner.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001452
EISBN: 978-1-62708-232-7
... embrittlement had developed following plastic straining and service at a temperature of 260 deg C (500 deg F) suggested that failure resulted from strain-age embrittlement. Brackets Ovens Rimming steel Brittle fracture A bracket which formed part of the carrier of a chain conveyor system used...
Abstract
A bracket which formed part of the carrier of a chain conveyor system used to transport components through a continuous oven fractured. A brittle crack originated on the inside of the right-angled bend, the surface having oxidized subsequently. The remaining portion of the fracture resulted from fatigue. Shallow oxidized regions adjacent to the inside surface of the bend indicated pre-existing cracks. A sulphur print on the edge of the bracket showed the material was rolled from a rimming steel ingot. The general appearance of the fracture, and the fact failure took place where embrittlement had developed following plastic straining and service at a temperature of 260 deg C (500 deg F) suggested that failure resulted from strain-age embrittlement.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001011
EISBN: 978-1-62708-229-7
... of failure involved overheating of the Cr-Mo outlet tubes, heavy oxidation, oxide cracking on thermal cycling, thermal fatigue cracking plus oxidation, creep-controlled crack growth, and rapid plastic deformation and rupture. This failure was indicative of excess temperature of the steam coming from the heat...
Abstract
After some 87,000 h of operation, failure took place in the bend of a steam pipe connecting a coil of the third superheater of a steam generator to the outlet steam collector. The unit operated at 538 deg C and 135 kPa, producing 400 t/h of steam. The 2.25Cr-1Mo steel pipe in which failure took place was 50.8 mm in diam with a nominal wall thickness of 8 mm. It connected to the AISI 321 superheater tube by means of a butt weld and was one of 46 such parallel connecting tubes. The Cr-Mo tubing was situated outside the heat transfer zone of the superheater. The overall sequence of failure involved overheating of the Cr-Mo outlet tubes, heavy oxidation, oxide cracking on thermal cycling, thermal fatigue cracking plus oxidation, creep-controlled crack growth, and rapid plastic deformation and rupture. This failure was indicative of excess temperature of the steam coming from the heat transfer zone of the coil. It showed that many damage mechanisms may combine in the transition from fracture initiation to final failure. The presence of grain boundary sliding as an indication of creep damage was useful in the characterization of the stress level as high and showed that the process of creep was not operative throughout the life of the equipment.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001268
EISBN: 978-1-62708-215-0
.... Elongation Hardness Heat treatment Leaf springs, Mechanical properties Mechanical properties Plastic deformation Tensile strength Yield strength Inconel 718 UNS N07718 Heat treating-related failures Plastic bending Background The detent spring missile launcher failed in service during...
Abstract
A missile detached from a Navy fighter jet during a routine landing on an aircraft carrier deck because of a faulty missile launcher detent spring. Visual inspection of Inconel 718 detent spring assembly revealed that four of the nine spring leafs comprising the assembly were plastically deformed while two of the deformed leafs did not meet minimal hardness or tensile requirements. Liquid penetrant testing revealed no cracks or other surface discontinuities on the leaf springs. Material sectioned from the soft spring leafs was heat-treated according to specifications in the laboratory. The resultant increase in mechanical properties of the re-heat-treated material indicated that the original heat treatment was not performed correctly. The failure was attributed to improper heat treatment. Recommendations focused on more stringent quality control of the heat-treat operations.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048134
EISBN: 978-1-62708-235-8
... bend 3 the springs were subjected to impact loading by a plastic loading member, which moved a driven member approximately 0.5 mm (0.020 in.). This complex loading system developed very complicated stress patterns along the length of the springs. The springs were examined by high-power microscopy...
Abstract
A copper alloy C51000 (phosphor bronze, 5%A) failed prematurely during life testing of several such springs. The wire used for the springs was 0.46 mm (0.018 in.) in diam and was in the spring-temper condition. The springs were revealed to be subjected to cyclic loading, in the horizontal and vertical planes during the testing. The fracture was revealed to have occurred in bend 2. An indentation, presumably caused by the bending tool during forming, at the inner surface of the bend where fracture occurred was revealed by microscopic examination. Spiral marks produced on springs during rotary straightening were observed. A crack that had originated at the surface at the inside bend and had propagated toward the outside of the bend was revealed by microscopy of a longitudinal section taken through bend 2. The small bend radius was interpreted to contribute to spring fatigue as a result of result in straining at the bend zone. The spring was concluded to have failed in fatigue. It was recommended that the springs should be made of wire free from straightener marks and the bending tool should be redesigned so as not to indent the wire.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006919
EISBN: 978-1-62708-395-9
... Abstract This article reviews the impact response of plastic components and the various methods used to evaluate it.. It describes the effects of loading rate on polymer deformation and the influence of temperature and strain rate on failure mode. It discusses the advantages and limitations...
Abstract
This article reviews the impact response of plastic components and the various methods used to evaluate it.. It describes the effects of loading rate on polymer deformation and the influence of temperature and strain rate on failure mode. It discusses the advantages and limitations of standard impact tests, the use of puncture tests for assessing material behavior under extreme strain, and the application of fracture mechanics for analyzing impact failures. It also develops and demonstrates the theory involved in the design and analysis of thin-walled, injection-molded plastic components.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001336
EISBN: 978-1-62708-215-0
... would not cold work the pipe outer bends enough to form martensitic areas. The austenite-ferrite microstructurally induced galvanic corrosion because of the unique joint design. The weld zones were completely encapsulated in plastic, molded to provide a gasket surface. The undesirable chlorine...
Abstract
Catastrophic pitting corrosion occurred in type 304L stainless steel pipe flange assemblies in an industrial food processor. During regular service the pumped medium was pureed vegetables. In situ maintenance procedures included cleaning of the assemblies with a sodium hypochlorite solution. It was determined that the assemblies failed due to an austenite-martensite galvanic couple activated by a chlorine bearing electrolyte. The martensitic areas resulted from a transformation during cold-forming operations. Solution annealing after forming, revision of the design of the pipe flange assemblies to eliminate the forming operation, and removal of the source of chlorine were recommended.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided. crack-growth simulation elastic-plastic fracture...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006928
EISBN: 978-1-62708-395-9
... properties of plastics D4092 6721 Dynamic mechanical measurements on plastics D4440 6721-10 Rheological measurement of polymer melts using dynamic mechanical procedures D5023 6721-3 Measuring the dynamic mechanical properties of plastics using three-point bending D5026 6721-5 Measuring...
Abstract
This article briefly introduces some commonly used methods for mechanical testing. It describes the test methods and provides comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are also briefly described. The article discusses the processes involved in the short-term and long-term tensile testing of plastics. Information on the strength/modulus and deflection tests, impact toughness, hardness testing, and fatigue testing of plastics is also provided. The article describes tension testing of elastomers and fibers. It covers two basic methods to test the mechanical properties of fibers, namely the single-filament tension test and the tensile test of a yarn or a group of fibers.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... to carry, is incapable of performing its intended function, or interferes with the operation of another component. Distortion failures can be plastic or elastic and may or may not be accompanied by fracture. There are two main types of distortion: size distortion, which refers to a change in volume (growth...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... can be plastic or elastic and may or may not be accompanied by fracture. There are two main types of distortion: size distortion, which refers to a change in volume (growth or shrinkage), and shape distortion (bending or warping), which refers to a change in geometric form. Most of the examples...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... of cycles. Low-cycle fatigue may involve bulk plasticity and/or more plastic strain at the crack tip, whereas the deformation in high-cycle fatigue is primarily elastic. There is no universally accepted demarcation between low- and high-cycle fatigue. Furthermore, some industry-specific dividing lines...
Abstract
Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0090947
EISBN: 978-1-62708-225-9
... was 55 HRC, which is typical for case-hardened steel. A metallographic cross section through the fracture surface is shown in Fig. 1(b) . A secondary crack has opened substantially and blunted in the ductile core. Plastic distortion of the core grain structure at the crack tip was evident. The seat wall...
Abstract
Valve seats fractured during testing and during service. The seats were machined from grade 11L17 steel and were surface hardened by carburization. Investigation (visual inspection, hardness testing, 59x SEM images, and 2% nital etched 15x cross sections) supported the conclusion that the fracture occurred via brittle overload, which was predominantly intergranular. The amount of bending evidence and the directionality of the core overload fracture features suggest that the applied stresses were not purely axial, as would be anticipated in this application. The level of retained austenite in the hardened case layer likely contributed to the failure.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
..., and plastic strain. If any one of these three is not present, fatigue cracks will not initiate and propagate. The cyclic stress and strain starts the crack; the tensile stress produces crack growth (propagation). Although compressive stress will not cause fatigue cracks to propagate, compression loads may do...
Abstract
This article describes three design-life methods or philosophies of fatigue, namely, infinite-life, finite-life, and damage tolerant. It outlines the three stages in the process of fatigue fracture: the initial fatigue damage leading to crack initiation, progressive cyclic growth of crack, and the sudden fracture of the remaining cross section. The article discusses the effects of loading and stress distribution on fatigue cracks, and reviews the fatigue behavior of materials when subjected to different loading conditions such as bending and loading. The article examines the effects of load frequency and temperature, material condition, and manufacturing practices on fatigue strength. It provides information on subsurface discontinuities, including gas porosity, inclusions, and internal bursts as well as on corrosion fatigue testing to measure rates of fatigue-crack propagation in different environments. The article concludes with a discussion on rolling-contact fatigue, macropitting, micropitting, and subcase fatigue.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001664
EISBN: 978-1-62708-226-6
... caused by plastic deformation as a result of bending. Such regions were quite numerous and in fact one such region showed a crack opening up in the middle of a group of slip bands ( Figure 10 ). Slip bands were observed on the surface of the device at two major locations, adjacent to the fracture surface...
Abstract
A compression hip screw is a device designed to hold fractures in the area of the femur in alignment and under compression. A side plate, which is an integral part of the device, is attached by screws to the femur, and it holds the compression screw in position. The device analyzed had broken across the eighth hole (of nine holes) from the end of the plate. The detailed metallurgical failure analysis of the device, including metallography and fractography, is reported here. It was found that the device had adequate metallurgical integrity for the application for which it was intended. It is believed that failure was caused by the lack of a screw in the ninth hole. Evidence is also presented which indicates that the device was bent prior to insertion, and the local plastic deformation may have caused structural changes leading to premature crack initiation.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... deformation may be visible at the macroscale, such as the twisting of extrusion marks around the axis of the component (torsion loading). Two halves of a bending fracture can often be brought into close proximity to determine if a small amount of plastic bending has occurred (for example, by placing the two...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0051294
EISBN: 978-1-62708-221-1
.... The mechanical damage on the broken tines was not thought to be excessive, and the leg angle was close to that specified on the drawing, indicating that it had not been significantly abused in service. Abuse (such as use in very stony ground) would have caused plastic deformation. Inevitably there was some rust...
Abstract
An agricultural tine, which is a relatively large double torsion spring with outer legs that are used to sweep through hay or other crops and turn them over, had failed. It was made hard-drawn carbon steel. Bending fatigue was revealed by visual examination to be almost certainly the cause of failure. The fatigue fracture origin was found on the inside surface of the legs at the point where they joined the coiled body of the spring. It was established that the tines after being wound up by loading with hay, sprung back through the neutral unloaded position and into the unwind direction. This movement into the unwind direction was concluded to be happening often enough to initiate fatigue. The stress relieving temperature was recommended to be increased to reduce the residual stresses from coiling and hence improve fatigue performance.
1