Skip Nav Destination
Close Modal
Search Results for
Pins
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 279 Search Results for
Pins
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001037
EISBN: 978-1-62708-214-3
... Abstract Six wrist pins in a high-performance six-cylinder automotive engine failed after 4800 km (3000 mi) of normal operation. The pins were made of low-carbon steel that had been carburized both inside and outside. Two failed pins were examined. One had fractured into three pieces. The other...
Abstract
Six wrist pins in a high-performance six-cylinder automotive engine failed after 4800 km (3000 mi) of normal operation. The pins were made of low-carbon steel that had been carburized both inside and outside. Two failed pins were examined. One had fractured into three pieces. The other had not fractured, but exhibited circumferential cracks on the surface of the central zone. Visual surface examination and metallographic and chemical analyses were performed on the specimens. Cracking was attributed primarily to poor heat treatment, resulting in a brittle grain-boundary network of cementite, and to a design that had a raised central section of the inner diameter whose fillets were locations of high stress concentration. Rough machining of the inner diameter and an excessively deep case also contributed to failure. A double type of heat treatment after carburizing and change of the design to eliminate the raised central section were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048399
EISBN: 978-1-62708-226-6
... Abstract Two of four adjustable Moore pins, which had been used to stabilize a proximal femur fracture, were found to be broken and deformed at their threads. The pins were made from a cobalt-chromium alloy and were not in the same condition. Brittle precipitates in the grains and grain...
Abstract
Two of four adjustable Moore pins, which had been used to stabilize a proximal femur fracture, were found to be broken and deformed at their threads. The pins were made from a cobalt-chromium alloy and were not in the same condition. Brittle precipitates in the grains and grain boundaries were seen in one of the pins and hence the fracture was revealed to have occurred along the grain boundaries. The other pin made from cold-worked cobalt-chromium alloy was observed to have randomly lines of primary inclusions. Intermingled dimples and fatigue striations were exhibited on the fracture surface of this pin. Thus, the effect of different conditions of cobalt-chromium alloys on failure behavior was demonstrated as a result of this study.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048665
EISBN: 978-1-62708-217-4
... Abstract The jackscrew drive pins on a landing-gear bogie failed when the other bogie on the same side of the airplane was kneeled for tire change. The pins, made of 300M steel, were shot peened and chromium plated on the outside surface and were cadmium plated and painted with polyurethane...
Abstract
The jackscrew drive pins on a landing-gear bogie failed when the other bogie on the same side of the airplane was kneeled for tire change. The pins, made of 300M steel, were shot peened and chromium plated on the outside surface and were cadmium plated and painted with polyurethane on the inside surface. The top of the jackscrew was 6150 steel. Both ends of the pins were revealed to be dented where the jackscrew had pressed into them and were observed to have been resulted due to overdriving the jackscrew at the end of an unkneeling cycle. These dented areas were found to be heavily corroded with chromium plating missing. A heavily corroded intergranular fracture mode was revealed by chromium-carbon replicas of the areas of fracture origin. Deep corrosion pits adjacent to the fracture origins and directly beneath cracks in the chromium plate were revealed by metallographic examination. It was concluded that stress-corrosion cracks grew out from the rust pits. The pin material was changed from 300M steel to PH 13-8 Mo stainless steel, which is highly resistant to rusting and SCC and the jacking control system was modified to prevent overdriving.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0046238
EISBN: 978-1-62708-231-0
... Abstract Within about one month, several knuckle pins (AMS 6470 steel failed, and required to have a minimum case hardness of 92 h15N, a case depth of 0.4 to 0.5 mm (0.017 to 0.022 in.), and a core hardness of 285 to 341 HRB) used in engines failed over a range of 218 to 463 h in operation...
Abstract
Within about one month, several knuckle pins (AMS 6470 steel failed, and required to have a minimum case hardness of 92 h15N, a case depth of 0.4 to 0.5 mm (0.017 to 0.022 in.), and a core hardness of 285 to 341 HRB) used in engines failed over a range of 218 to 463 h in operation. Visual examination revealed beach marks typical of fatigue cracks that had nucleated at the base of the longitudinal oil hole. Micrographs of sections revealed a remelt zone and an area of untempered martensite within the region of the cracks. However, review of inspection procedures disclosed the pins had been magnetic-particle inspected by inserting a probe into the longitudinal hole. Evidence found supports the conclusions that the knuckle pins failed by fatigue fracture. The circular cracks at the longitudinal holes were the result of improper technique in magnetic-particle inspection. Thermal transformation of the metal also causes a stress concentration that may lead to fatigue failure. Recommendations included insulating the conductor to prevent arc burning at the base of the longitudinal oil hole. Also, a borescope or metal monitor could be used to inspect the hole for evidence of arc burning from magnetic-particle inspection.
Image
Published: 01 January 2002
Fig. 23 300M steel jackscrew drive pins that failed by SCC. (a) Four views of aft-pin locations of individual origins (numbers), directions of fracture (arrows), and final-fracture regions (wavy lines). (b) Same as (a) except for forward pin. (c) Top surface of forward pin showing slight bend
More
Image
Published: 01 January 2002
Fig. 8 Two broken Moore pins from cobalt-chromium alloy. (a) Longitudinal section through fracture surface showing grain-boundary precipitates and a partially intercrystalline fracture. 63×. (b) SEM fractograph indicating grain-boundary separation. Compare with (e). (c) Longitudinal section
More
Image
in Stress Corrosion Cracking of Tough Pitch Copper in a Bolting Application
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 1 Representative intact and service-fractured pins in the area of separation. Full pins could not be shown due to proprietary geometry. Arrow indicates seal position. Chamber side and head is left of arrow
More
Image
Published: 30 August 2021
Fig. 23 The 300M steel jackscrew drive pins that failed by stress-corrosion cracking. (a) Four views of aft-pin locations of individual origins (numbers), directions of fracture (arrows), and final-fracture regions (wavy lines). (b) Same as (a) except for forward pin. (c) Top surface
More
Image
in Broken Adjustable Moore Pins Made From Cobalt-Chromium Alloy
> ASM Failure Analysis Case Histories: Medical and Biomedical Devices
Published: 01 June 2019
Fig. 1 Two broken Moore pins from cobalt-chromium alloy. (a) Longitudinal section through fracture surface showing grain-boundary precipitates and a partially intercrystalline fracture. 63×. (b) SEM fractograph indicating grain-boundary separation. Compare with (e). (c) Longitudinal section
More
Image
in Shear Band Failures in Threaded Titanium Alloy Fasteners
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 8 Photomacrographs of the fracture surfaces of the pins from the three manufacturers that were uniaxially tested to failure. Note the manufacturer A pins fractured through one thread root, while the manufacturers B and C pins fractured through a number of thread roots.
More
Image
in Shear Band Failures in Threaded Titanium Alloy Fasteners
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 9 Electron micrographs of the shear band regions of the pins tested to failure for comparison. The manufacturer A shear band (a) is at a much lower angle to the pin axis than the other manufacturer's shear band (b).
More
Image
in Shear Band Failures in Threaded Titanium Alloy Fasteners
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 11 Optical micrographs of the thread root of a manufacturer's B or C pins. The broad arrow in photograph (a) indicated the region enlarged in photograph (b). Shear bands (b, arrows) were oriented about 25 degrees to the pin axis (b).
More
Image
Published: 01 June 2019
Fig. 1 300M steel jackscrew drive pins that failed by SCC. (a) Four views of aft-pin locations of individual origins (numbers), directions of fracture (arrows), and final-fracture regions (wavy lines). (b) Same as (a) except for forward pin. (c) Top surface of forward pin showing slight bend
More
Image
in Fatigue Failure of a Steel Channel-Shaped Retainer Because of Vibration
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Fatigue-fractured low-carbon steel retainer (a) for the pivot pins of a flyweight assembly (b) used in an aircraft-engine governor. Dimensions given in inches
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001417
EISBN: 978-1-62708-227-3
... Abstract A marine diesel running at 350 rpm had satisfactorily completed 13,000 h before failure of one of the piston pins took place. The pin, 17 in. long, with a central bore of 3 in. diam, failed transversely approximately 3 in. from one end. The characteristic conchoidal markings indicative...
Abstract
A marine diesel running at 350 rpm had satisfactorily completed 13,000 h before failure of one of the piston pins took place. The pin, 17 in. long, with a central bore of 3 in. diam, failed transversely approximately 3 in. from one end. The characteristic conchoidal markings indicative of fatigue failure were present with origins at about the mid-thickness of the pin located each side of the step in the fracture surface. In addition, cracking was evident in the axial direction. The crack ran into one of the radial oil holes near the end of the pin. A further section was taken transverse to the crack surface and subsequent examination confirmed the presence of a slag inclusion on the edge of the crack. The inclusion ran the full length of the component. The stress raising effect of the inclusion in combination with the residual and service stresses served to initiate the cracking in the longitudinal direction. Although the longitudinal crack preceded the transverse ones, it would appear that once initiated, the latter developed at a greater rate than the former.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048661
EISBN: 978-1-62708-225-9
... Abstract The drive wheel on a clutch-drive support assembly was slightly loose and caused clutch failures in service after 680,000 cycles. After failure, removal of the taper pin holding the drive wheel on the shaft was difficult, indicating that the pin was tight in the assembly. The taper pin...
Abstract
The drive wheel on a clutch-drive support assembly was slightly loose and caused clutch failures in service after 680,000 cycles. After failure, removal of the taper pin holding the drive wheel on the shaft was difficult, indicating that the pin was tight in the assembly. The taper pin was made of 1141 steel, the shaft 1117 steel, and the drive wheel 52100 steel. It was found that failure of the clutch-drive support assembly occurred as a result of fatigue fracture of the taper pin. A loose fit between the drive wheel and the shaft and between the drive wheel and the pin permitted movement that resulted in fatigue failure. Fretting of the pin and drive shaft was observed but did not appear to have contributed to the failure. To prevent reoccurrence, the assembly should be redesigned to include an interference fit between the shaft and the drive wheel. The drive wheel and the shaft should be taper reamed at assembly to ensure proper fit. In addition, receiving inspection should be more critical of the components and accept only those that meet specifications.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001230
EISBN: 978-1-62708-236-5
... Abstract A crankshaft was overloaded on a test stand and suffered an incipient crack in the crank pin. The crack run generally parallel to the longitudinal axis and branched off at the entrance into the two fillets at the transition to the crank arm. It consisted of many small cracks, all...
Abstract
A crankshaft was overloaded on a test stand and suffered an incipient crack in the crank pin. The crack run generally parallel to the longitudinal axis and branched off at the entrance into the two fillets at the transition to the crank arm. It consisted of many small cracks, all of which propagated at an angle of approximately 45 deg to the longitudinal axis, and therefore were caused by torsion stresses. Neither macroscopic nor microscopic examination determined any material or processing faults. Experience has shown that torsion vibration fractures of this kind usually appear in comparatively short journal pins at high stresses. This crankshaft fracture was an example of the damage that is caused or promoted neither by material nor heat treatment mistakes nor by defects of design or machining, but solely by overstressing.
Image
Published: 01 January 2002
Fig. 14 Pin and clevis loading. (a) Pin going through loaded clevis and plate. (b) Shear planes in a clevis and pin connected to a threaded eye bolt
More
Image
Published: 15 January 2021
Fig. 14 Pin and clevis loading. (a) Pin going through loaded clevis and plate. (b) Shear planes in a clevis and pin connected to a threaded eye bolt
More
1