Skip Nav Destination
Close Modal
Search Results for
Pickling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 100 Search Results for
Pickling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001626
EISBN: 978-1-62708-235-8
... Abstract A type 17-4PH stainless steel tube exhibited brown discoloration after a pickling operation. EDS analysis of the extracted substance revealed relatively high levels of iron and chromium, along with lower amounts of aluminum, silicon, sulfur, chlorine, calcium, manganese, and nickel...
Abstract
A type 17-4PH stainless steel tube exhibited brown discoloration after a pickling operation. EDS analysis of the extracted substance revealed relatively high levels of iron and chromium, along with lower amounts of aluminum, silicon, sulfur, chlorine, calcium, manganese, and nickel. The iron, chromium, and nickel are likely in the form of dissolution products from the pickling solution. FTIR analysis revealed the presence of polypropylene and poly(ethylene:propylene). The EDS results showed that the discoloration of the tube was associated with oxidation products of the tube material, as well as adherent organic residue. Analysis by FTIR of the residue revealed detectable levels of two polymeric substances, which were later determined to be construction materials of the pickling tank. It was recommended that more frequent cleaning and/or replacement of the pickling solution be put into place and another type of tank material be considered.
Image
in Broken Structural Bolt
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 9 Microstructure of weld seams, etch: V2A-pickling solution. 50 ×
More
Image
in Investigation of Superheated Steam Push Rod Spindles
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 4 Microstructure of hardened zone, etch: V2A-pickling solution. 500 ×
More
Image
in Investigation of Superheated Steam Push Rod Spindles
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 5 Unchanged microstructure of spindle, etch: V2A-pickling solution. 500 ×
More
Image
in Investigation of Superheated Steam Push Rod Spindles
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 10 Longitudinal section, etch: V2A-pickling solution. 100 ×. Crack in transition from weld seam (left) to spindle (location a in Fig. 9 ).
More
Image
in Investigation of Superheated Steam Push Rod Spindles
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 11 Longitudinal section, etch: V2A-pickling solution. 100 ×. Crack in weld seam (location b in Fig. 9 ).
More
Image
in Corrosion Failure of Stainless Steel Components During Surface Pretreatment
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 1 Components after pickling and passivation treatment. (a) Component A. (b) Component B. 0.6×.
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048147
EISBN: 978-1-62708-234-1
... during investigation. Etch pits were revealed by the cleaned surface which were never observed on properly phosphated coating. It was interpreted that the spring had been subjected to an abnormal acid attack in pickling or phosphating which had resulted in considerable absorption of hydrogen by the metal...
Abstract
The power-type counterbalance spring, formed from hardened-and-tempered carbon steel strip and subsequently subjected to phosphating treatment, fractured at the two locations during fatigue testing. A rust colored dark band at the inside edge of the fracture surface was disclosed during investigation. Etch pits were revealed by the cleaned surface which were never observed on properly phosphated coating. It was interpreted that the spring had been subjected to an abnormal acid attack in pickling or phosphating which had resulted in considerable absorption of hydrogen by the metal and hence embrittlement. The part was concluded to have cracked during phosphating or excessive acid pickling before phosphating.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001519
EISBN: 978-1-62708-223-5
... suspicion of hydrogen embrittlement. It appeared that fracture in service progressed transgranularly to produce delayed failure under dynamic loading. The pickling process used to remove heat scale was suspected to be the source of hydrogen on the surface of the bolt. The manufacturer was requested...
Abstract
An AISI 4340 Ni-Cr-Mo alloy steel draw-in bolt and the collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after relatively long service life. Based on fracture surface features, it was suspected that the draw-in bolt was the first to fracture, followed by failure of the collet, which shattered one of its arms when it struck the work table. Scanning electron microscopy showed the presence of hairline crack indications along grain facets on the fracture surface of the bolt. This, coupled with stepwise cracking in the material, generally raised suspicion of hydrogen embrittlement. It appeared that fracture in service progressed transgranularly to produce delayed failure under dynamic loading. The pickling process used to remove heat scale was suspected to be the source of hydrogen on the surface of the bolt. The manufacturer was requested to change its cleaning practice from pickling to grit blasting.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001282
EISBN: 978-1-62708-215-0
... Abstract Two AISI type 316 stainless steel components intended for use in a reducer section for sodium piping in a fast breeder test reactor were found to be severely corroded—the first soon after pickling, and the second after passivation treatments. Metallographic examination revealed...
Abstract
Two AISI type 316 stainless steel components intended for use in a reducer section for sodium piping in a fast breeder test reactor were found to be severely corroded—the first soon after pickling, and the second after passivation treatments. Metallographic examination revealed that one of the components was in a highly sensitized condition and that the pickling and passivation had resulted in severe intergranular corrosion. The other component was fabricated from thick plate and, after machining, the outer surface represented the transverse section of the original plate. Pickling and passivation resulted in severe pitting because of end-grain effect. Strict control of heat treatment parameters to prevent sensitization and modification of pickling and passivating conditions for machined components were recommended.
Image
in Damaged Section of a Worm Drive
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 3 Microstructure in the cracked zone revealed by etching with V2A pickle. 200 ×
More
Image
in Pressure Vessel from a High-Pressure Vibratory Autoclave Burst by Explosion
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 5 Highly magnified micrograph of section etched with stainless steel pickle. 1000 ×
More
Image
in Leaky Derusting Vessel Made of 18/8 Steel
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 5 As Fig. 4 ., after etching with V2A pickle, 200×
More
Image
in Damaged Impellers in a Rotary Pump
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 3 Microstructure of a specimen from impeller I. Etched with V2A pickle. 500 ×
More
Image
in Examination of an Oxidized Heating Coil
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 3 Transverse section through a slightly oxidized spot. Etch: V2A pickle. 15×
More
Image
in Examination of an Oxidized Heating Coil
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 4 Core structure of the spiral. Transverse section. Etch: V2A pickle. 75×
More
Image
in Cracked Disks of Fan Made of Heat Resistant Steel
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 4 Microstructure of sheet. 500×. Etch: V2A-pickle.
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001746
EISBN: 978-1-62708-217-4
... mechanism. As for the factors involved, cadmium plating, acid pickling, and steelmaking processes introduce hydrogen on part surfaces. As a second contributing factor, both bolts were 10 Rc points higher in hardness than specified (25 Rc), lessening ductility and notch toughness. A third factor...
Abstract
Brittle intergranular fracture, typical of a hydrogen-induced delayed failure, caused the failure of an AISI 4340 Cr-Mo-Ni landing gear beam. Corrosion resulting from protective coating damage released nascent hydrogen, which diffused into the steel under the influence of sustained tensile stresses. A second factor was a cluster of non-metallic inclusions which had ‘tributary’ cracks starting from them. Also, eyebolts broke when used to lift a light aircraft (about 7000 lb.). The bolt failure was a brittle intergranular fracture, very likely due to a hydrogen-induced delayed failure mechanism. As for the factors involved, cadmium plating, acid pickling, and steelmaking processes introduce hydrogen on part surfaces. As a second contributing factor, both bolts were 10 Rc points higher in hardness than specified (25 Rc), lessening ductility and notch toughness. A third factor was inadequate procedure, which resulted in bending moments being applied to the bolt threads.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001373
EISBN: 978-1-62708-215-0
... Abstract Two new chrome-plated CDA 377 brass valves intended for inert gas service failed on initial installation. After a pickling operation to clean the metal, the outer surfaces of the valves had been flashed with copper and then plated with nickel and chromium for aesthetic purposes. One...
Abstract
Two new chrome-plated CDA 377 brass valves intended for inert gas service failed on initial installation. After a pickling operation to clean the metal, the outer surfaces of the valves had been flashed with copper and then plated with nickel and chromium for aesthetic purposes. One of the valves failed by dezincification. The porous copper matrix could not sustain the clamping loads imposed by tightening the pressure relief fitting. The second valve failed by shear overload of the pressure relief fitting. Overload was facilitated by a reduction of cross-sectional area caused by intergranular attack and slight dezincification of the inner bore surface of the fitting. Dezincification and intergranular attack were attributed to excessive exposure to nonoxidizing acids in the pickling bath.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001178
EISBN: 978-1-62708-235-8
... were fine-grained and had not spread by rubbing. Because the screws were electrolytically galvanized, failure resulted from “delayed fracture.” Experience has shown that this type of fracture is seen on production parts made of high-strength steels, which absorbed hydrogen during pickling or during...
Abstract
Eight cylinderhead screws cracked after a short running time in motors. They were made of Fe-0.45C-1Cr steel, had rolled threads, were heat treated to 110 kg/sq mm tensile strength, and were electrolytically galvanized. All fractured at the root of the thread. The surfaces of fracture were fine-grained and had not spread by rubbing. Because the screws were electrolytically galvanized, failure resulted from “delayed fracture.” Experience has shown that this type of fracture is seen on production parts made of high-strength steels, which absorbed hydrogen during pickling or during a galvanic surface treatment. Such parts will rupture below the elastic limit during continuous stressing. This often occurs only after the expiration of a certain time period, and preferably at locations of stress concentrations such as changes in cross section or threads. As a rule, the hydrogen cannot be verified analytically because most of it escapes again after prolonged storage at room temperature or short heating at 100 to 200 deg C.
1