1-20 of 43 Search Results for

Petrochemical equipment

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001736
EISBN: 978-1-62708-220-4
... mechanism, namely grain boundary sliding, relating to the periodic nature of the loading, with high residual stresses being present. Grain boundary sliding Petrochemical equipment Transfer piping Welded joints 316 UNS S31600 Creep fracture/stress rupture Leakage was detected at the welds...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001101
EISBN: 978-1-62708-214-3
... Abstract Several cadmium-plated carbon steel socket head cap screws that were part of a slide valve assembly on a regenerator line in a petrochemical plant failed during initial loading. Metallographic and XDS chemical analysis in conjunction with SEM examination of one failed and one unfailed...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001774
EISBN: 978-1-62708-241-9
... products ( Fig. 4 ). Stress corrosion cracking (SCC) is one of the major contributors to the failures in petrochemical industries that deal with potentially aggressive chemical species. SCC is reported to be the principal mode of failure of plant equipment in oil industries, and accounts for about 25...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001775
EISBN: 978-1-62708-241-9
... by stresses induced in the tube bending operation rather than by weld-related residual stresses. The petrochemical industry constitutes an active field for applied failure analysis. A wide range of potential failure mechanisms exists because of the variety of the equipment materials, the number of handled...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
.... Peckner D. , Bernstein I.M. : Handbook of Stainless Steels . McGraw-Hill Book Company , New York, NY ( 1977 ) 10. Fernandes J.L. , Castro J.T.P. : Fatigue Crack Propagation in API-5L-X60 , Technology and Equipments Conference—VI COTEQ , Aug , 10 pages ( 2002 ) 10.1016...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001367
EISBN: 978-1-62708-215-0
... Abstract Cracking was discovered in an in-service, second-stage turbine impeller during a downtime inspection. The fabricated 4300 series low-alloy steel impeller was used in a compressor in an industrial petrochemical plant. It was also reported that a process upset had allowed a 10% NaOH...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001675
EISBN: 978-1-62708-220-4
... high local stress. The study indicates that standard metallographic procedures can be used to identify failure modes in high temperature petrochemical plants. Creep (materials) Petrochemical plants Reformer tubes Incoloy 800H UNS N08810 Thermal fatigue fracture Tubing operating at high...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001280
EISBN: 978-1-62708-215-0
... Abstract An HK-40 alloy tubing weld in a reformer furnace of a petrochemical plant failed by leaking after a shorter time than that predicted by design specifications. Leaking occurred because of cracks that passed through the thickness of the weldment. Analysis of the cracked tubing indicated...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001590
EISBN: 978-1-62708-228-0
... with grain size and retained cold work. Thus, an alloy, such as mill annealed (ASTM grain size < 5) Inconel Alloy 690 (N06690) (0.03% C max.) would be a highly resistant alloy to stress relaxation cracking. Many typical alloys for use within refineries and chemical and petrochemical facilities contain...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
.... The American Society of Mechanical Engineers (ASME), for example, bases its allowable stress values for pressure-containing equipment on a 100,000 h (11.4 years) service life at temperatures in the range where the selection of stresses is governed by creep ( Ref 4 ). In the early days of creep design...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001108
EISBN: 978-1-62708-214-3
... be used for fabrication of the curved parts. A change of alloy to a low-alloy chromium-molybdenum allay to protect against heat was also suggested. Chemical processing equipment Chemical reactors Creep (materials) Pipe bends Tubing Incoloy 800H UNS N08810 Intergranular fracture Creep...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001771
EISBN: 978-1-62708-241-9
... are the following: To avoid such degradation it is necessary to check the operation and decoking temperature and to ensure that the temperature is less than the design temperature. The microstructures of the unused, unfailed and ruptured tubes were studied by optical microscopy and SEM equipped with EDS...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006804
EISBN: 978-1-62708-329-4
... Abstract This article addresses the effects of damage to equipment and structures due to explosions (blast), fire, and heat as well as the methodologies that are used by investigating teams to assess the damage and remaining life of the equipment. It discusses the steps involved in preliminary...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001687
EISBN: 978-1-62708-220-4
... properties. Grain boundary sliding and dislocation motion were enhanced, causing a local increase in the steady state strain rate and the premature failure of the tube. Grain boundary sliding Plastic deformation Spalling Voids HK UNS J94224 Creep fracture/stress rupture The petrochemical...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
.... Finally, the article presents practical fatigue assessment case studies of in-service equipment (pressure vessels) that employ DBA methods. damage tolerance design analysis fatigue damage mitigation fatigue life assessment fracture mechanics pressure vessels welds FATIGUE FAILURE of metal...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006823
EISBN: 978-1-62708-329-4
... insulation in an organic sulfur environment, and an equalization tank with localized corrosion in the shell courses in a chemicals facility. In the first two cases, remaining life is assessed by determining the minimum thickness required to operate the corroded equipment. The first is based on a Level 2 FFS...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001779
EISBN: 978-1-62708-241-9
... ( 2005 ) 10.1016/j.matdes.2004.04.003 18. API STANDARD 610: Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries , 9th edn. American Petroleum Institute , Washington ( 2003 ) 19. ASM Handbook , Vol. 18: Friction, Lubrication, and Wear Technology . American Society...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... by operators in the petrochemical and other industries. Fig. 1 Life-cycle management for pressurized fixed equipment This section refers to API STD 579-1/ASME FFS-1, which covers assessments of pressure-containing fixed equipment installed in process units, including pressure vessels, piping...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
... defects per million opportunities (equivalent to 99.9997% reliability). This is indeed a lofty goal for any organization (be it a manufacturing company, a petrochemical plant, a service business, or a government agency), but companies committed to Six Sigma have reported significant gains in productivity...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service...