Skip Nav Destination
Close Modal
Search Results for
Passivation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 95 Search Results for
Passivation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Corrosion Failure of Stainless Steel Components During Surface Pretreatment
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 1 Components after pickling and passivation treatment. (a) Component A. (b) Component B. 0.6×.
More
Image
Published: 01 January 2002
Fig. 1 Corrosion characteristics of an active-passive metal as a function of solution oxidizing power (electrode potential)
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001282
EISBN: 978-1-62708-215-0
... Abstract Two AISI type 316 stainless steel components intended for use in a reducer section for sodium piping in a fast breeder test reactor were found to be severely corroded—the first soon after pickling, and the second after passivation treatments. Metallographic examination revealed...
Abstract
Two AISI type 316 stainless steel components intended for use in a reducer section for sodium piping in a fast breeder test reactor were found to be severely corroded—the first soon after pickling, and the second after passivation treatments. Metallographic examination revealed that one of the components was in a highly sensitized condition and that the pickling and passivation had resulted in severe intergranular corrosion. The other component was fabricated from thick plate and, after machining, the outer surface represented the transverse section of the original plate. Pickling and passivation resulted in severe pitting because of end-grain effect. Strict control of heat treatment parameters to prevent sensitization and modification of pickling and passivating conditions for machined components were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001068
EISBN: 978-1-62708-214-3
... to weld spatter and uneven weld deposit and by service water that had not been drained after hydrostatic testing. External corrosion was attributed to improper passivation. It was recommended that the surfaces be properly passivated and that, before storage, the interiors be rinsed with demineralized...
Abstract
Four tanks made from type 304L stainless steel were removed from storage. Atmospheric corrosion on the outside of the tanks and pitting and crevice corrosion on the inside were visible. Metallographic examination revealed that the internal corrosion had been caused by crevices related to weld spatter and uneven weld deposit and by service water that had not been drained after hydrostatic testing. External corrosion was attributed to improper passivation. It was recommended that the surfaces be properly passivated and that, before storage, the interiors be rinsed with demineralized water and dried.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091394
EISBN: 978-1-62708-227-3
... in the bottom of the long run of pipe. Cl ions, which are plentiful in seawater, attack and damage the passive film and activate the surface of the metal at that point. As the corrosion starts at the tiny active sites, hydrolysis and precipitates of the less-soluble Fe 2+ hydroxides produce increased...
Abstract
An austenitic stainless steel (type 316/316L stainless steel, schedule 40, 64 mm (2.5 in.) diam and larger) piping network used in the fire-sprinkler system in a large saltwater passenger and car ferry failed by rapid leaking. Operating conditions involved stagnant seawater at ambient temperatures. The pipe was in service for four weeks when three leaks appeared. Investigation (visual inspection and photographic images) supported the conclusion that the failure was caused by attack and corrosion damage of Cl ions in conditions that were ideal for three modes of highly accelerated pitting of austenitic stainless steel: the bottom surface, weld or HAZ pits, and crevices. Recommendations included proper material selection for piping, flanges, and weld rods with greater corrosion resistance. Proper filtering to prevent entrained abrasives and timely breakdown inspections were also advised.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001070
EISBN: 978-1-62708-214-3
... of the borderline passivity of type 316L in hot dilute sulfuric acid (about 0.1%). Inaccuracy of the testing was attributed to the presence of cupric ions in the lead-lined vessel fluids, which had been released by corrosion of the copper coils. Careful control of both temperature and pH was recommended to reduce...
Abstract
Although field corrosion tests had indicated that type 316L stainless steel would be a suitable material for neutralization tanks, the vessels suffered severe corrosion when placed in service. Welded coupons of type 316L had been tested along with similar Alloy 20Cb® (UNS NO8020) specimens in a lead-lined tank equipped with copper coils that had served in this function prior to construction of the new tanks. Both materials exhibited virtually no corrosion and no preferential weld attack. Type 316L was selected for the project. The subsequent corrosion was the result of the borderline passivity of type 316L in hot dilute sulfuric acid (about 0.1%). Inaccuracy of the testing was attributed to the presence of cupric ions in the lead-lined vessel fluids, which had been released by corrosion of the copper coils. Careful control of both temperature and pH was recommended to reduce the corrosion to an acceptable limit.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046142
EISBN: 978-1-62708-217-4
... (AISI type 410) stainless steel that was through-hardened to 26 to 32 HRC and passivated, was shown to be cracked. The crack initiated at the sharp corner of the elongated milled slot and propagated across to the outer wall. The sections around the crack were spread about 30 deg apart, showing...
Abstract
To ensure no malfunctions and although there were no apparent problems, a main fuel control was returned to the factory for examination after service on a test aircraft engine that had experienced high vibrations. When the fuel control was disassembled, a lever, cast from AMS 5350 (AISI type 410) stainless steel that was through-hardened to 26 to 32 HRC and passivated, was shown to be cracked. The crack initiated at the sharp corner of the elongated milled slot and propagated across to the outer wall. The sections around the crack were spread about 30 deg apart, showing the fracture surface under investigation had beach marks initiating at the sharp corner along the milled slot. Changes in frequency or amplitude of vibration caused different rates of propagation, resulting in a change in pattern. This evidence supported the conclusion that the lever failed in fatigue as a result of excessive vibration of the fuel control on the test engine. Recommendations included redesign of the lever with a large radius in the corner where cracking originated. This would reduce the stress-concentration factor significantly, thus minimizing the susceptibility of the lever to fatigue.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001168
EISBN: 978-1-62708-219-8
... appears to be the result of a combination of pitting and stress corrosion, most likely due to chlorides. The factory was recommended to use molybdenum-alloyed steels (type 18/10 or 18/12) which are more resistant to local disruption of passivating films and pitting than molybdenum-free types such as 18/8...
Abstract
Steel pipes, used for years in a food factory soft water preheater, were found to leak as a result of corrosion. The pipes, made of 18/8 steel, were immersed in steam maintained at 0.5 atm and 150 deg C. They carried desalinated process water, heating it to approximately 100 deg C. Inspection revealed a reddish-brown coating on the outside of the pipe with a few flat pitting holes and incipient cracks. Corrosion was also observed on the inner walls of the pipe, consisting of rust patches with pitting scars, branching out to predominantly transcrystalline cracks. In this case, leaking appears to be the result of a combination of pitting and stress corrosion, most likely due to chlorides. The factory was recommended to use molybdenum-alloyed steels (type 18/10 or 18/12) which are more resistant to local disruption of passivating films and pitting than molybdenum-free types such as 18/8.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091201
EISBN: 978-1-62708-219-8
..., and 5x/10x images etched in ASTM 89 reagent) supported the conclusion that the pitting in the austenitic stainless steel pipe was believed to be caused by damage to the passive layer brought about by a combination of MIC, high chloride levels, and high total dissolved solids. The low-flow and stagnant...
Abstract
Type 316L (UNS S31603) austenitic stainless steel piping was installed as part of a storm-sewer treatment collection system in a manufacturing facility. Within six months of start-up, leaks were discovered. Investigation (on-site current flow testing, visual inspection, water tests, and 5x/10x images etched in ASTM 89 reagent) supported the conclusion that the pitting in the austenitic stainless steel pipe was believed to be caused by damage to the passive layer brought about by a combination of MIC, high chloride levels, and high total dissolved solids. The low-flow and stagnant conditions present in the piping were primary contributors to the pit progression. Recommendations included replacing the pipe. Several alloys, nonmetallic materials, and lining materials were proposed for coupon testing to determine which would operate best in an environment with high levels of aerobic bacteria.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001390
EISBN: 978-1-62708-215-0
... not been carried out as specified. It was recommended that the sheathing material be fully annealed and that the outer surface be pickled and passivated. Electric heating elements Heat-distributing units Marine atmospheres Nuclear reactor components Sheaths 304L UNS S30403 Stress-corrosion...
Abstract
Cracking occurred in type 304L stainless steel sheaths on nichrome wire heaters that had been in storage for about 5 years in a coastal atmosphere. The cracks were discovered when the heater coils were removed from storage in their original polyethylene packing materials and straightened for use. Fractography established that fracture occurred by stress-corrosion cracking. The cracks originated at rusted areas on the cladding that occurred under iron particles left on the surface during manufacture. High hardness values indicated that solution annealing following cold working had not been carried out as specified. It was recommended that the sheathing material be fully annealed and that the outer surface be pickled and passivated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001525
EISBN: 978-1-62708-220-4
... disturbance to any passive layer that may be present on the surface of the sample. One way to represent EIS data is by Bode plots, in which impedance is plotted as a function of frequency. The Bode plots generated by EIS of typical panels from each set are presented in Fig. 2 . These plots show a clear...
Abstract
Welded steel storage vessels used to hold mildly alkaline solution were produced in exactly the same manner from deep-drawn aluminum-killed SAE 1006 low-carbon steel sheet. After the cylindrical shell was drawn, a top low-carbon steel closure was welded to the inside diameter. The containers were then filled with the slightly alkaline solution, pressurized, and allowed to stand under ambient conditions. A small number, less than 1%, were returned because they began to leak in service. Inspection revealed general corrosion and pitting on the inner surfaces. However, other tanks that experienced the same service conditions developed no corrosion. Corrosion was linked to forming defects that provided sites for localized corrosion, and to lack of steam drying after cleaning, which increased susceptibility to general corrosion.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001343
EISBN: 978-1-62708-215-0
... was in good metallurgical condition. It was free from sensitization, and there was no significant amount of cold work. All stainless steel components are pickled and passivated as a last step in the manufacturing process. This ensures removal of all surface impurities, especially embedded iron, and also...
Abstract
A section of type 304 stainless steel pipe from a stand by system used for emergency injection of cooling water to a nuclear reactor failed during precommissioning. Leaking occurred in only one spot. Liquid penetrant testing revealed a narrow circumferential crack. Metallographic examination of the cracked area indicated stress-corrosion cracking, which had originated at rusted areas that had formed on longitudinal scratch marks on the outer surface of the pipe. The material was free from sensitization, and there was no significant amount of cold work. It was recommended that the stainless steel be kept rust free.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091318
EISBN: 978-1-62708-217-4
... concentration, passivation is complete; at lower concentrations, chloride does not penetrate the passive film. Apparently, the concentration of sterilizing solution used was in the range that promotes pitting. Failure of the stainless steel tanks by chloride-induced pitting resulted from using an overly...
Abstract
Two freshwater tanks (0.81 mm (0.032 in) thick, type 321 stainless steel) were removed from aircraft service because of leakage due to pitting and rusting on the bottoms of the tanks. One tank had been in service for 321 h, the other for 10 h. There had been departures from the specified procedure for chemical cleaning of the tanks in preparation for potable water storage. The sodium hypochlorite sterilizing solution used was three times the prescribed strength, and the process exposed the bottom of the tanks to hypochlorite solution that had collected near the outlet. Investigation (visual inspection, 95x unetched images, chemical testing with a 5% salt spray, chemical testing with sodium hypochlorite at three strength levels, samples were also pickled in an aqueous solution containing 15 vol% concentrated nitric acid (HNO3) and 3 vol% concentrated hydrofluoric acid (HF) and were then immersed in the three sodium hypochlorite solutions for several days) supported the conclusion that failure of the stainless steel tanks by chloride-induced pitting resulted from using an overly strong hypochlorite solution for sterilization and neglecting to rinse the tanks promptly afterward. Recommendations included revising directions for sterilization and rinsing.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... to protective metal oxide films. Many corrosion-resistant metallic materials have a thin oxide film (i.e., a passive film formed on the surface) that blocks or minimizes the interaction between the surface and surrounding medium, thus suppressing corrosion reactions. When the materials are subjected to wear...
Abstract
Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms for corrosive wear. Next, the article explains testing methods and characterization of corrosive wear. Various factors that influence corrosive wear are then covered. The article concludes with general guidelines for material selection against corrosive wear.
Image
Published: 01 January 2002
Fig. 12 X-ray photoelectron spectroscopy high-resolution iron spectrum obtained from well-passivated stainless steel surface
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001171
EISBN: 978-1-62708-219-8
... stainless steels are reported to derive their corrosion resistance from a passive oxide film, which forms on their surface. In oxidizing media (such as the sea water with 5 to 10 mg/1 oxygen dissolved) the film remains intact, but can be broken in the regions where the oxygen concentration...
Abstract
The defects observed along weldings of stainless steel pipelines employed in marine environments were evidenced by metallographic and electrochemical examination. A compilation of cases on the effect of defective weldings, in addition to improper choice of stainless steel for water pipelines, lead to the conclusion that intercrystalline corrosion in steels involved precipitation of a surplus phase at grain boundaries. Intercrystalline corrosion in austenitic stainless steels due to precipitation of chromium carbides during conditions generated due to welding and ways to avoid the precipitation (including reduction of carbon content, appropriate heat treatment, cold work of steel, reduction of austenitic grain size and stabilizing elements) were described. The presence of microcracks due to highly localized heat concentrations with consequent thermal expansion and considerable shrinkages during cooling was investigated. The specimens were taken from various sources including transverse and longitudinal welding seam, sensitized areas and it was concluded appropriate material selection with respect to medium could control some corrosion processes.
Image
Published: 01 January 2002
Fig. 3 Potential ranges of environmentally assisted cracking by (I) hydrogen embrittlement, (II) cracking of unstable passive film, and (III) cracking initiated at pits near the pitting potential. Vertical dashed lines define potential range over which nonpassivating films may crack under
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... Fig. 1 Corrosion characteristics of an active-passive metal as a function of solution oxidizing power (electrode potential) Fig. 2 Pitting corrosion of 316L stainless steel pipe. (a) View of pitting on the outside-diameter surface at the leak location. (b) View of the inside-diameter...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047745
EISBN: 978-1-62708-235-8
... withstood a 1035-kPa (150-psi) pressure test using tap water. All surfaces were to have been passivated according to MIL-S-5002 before assembly, but no other cleaning techniques were stipulated. Investigation The failed braze had joined a convolute bellows to a cup on the end of a tube elbow ( Fig...
Abstract
A 321 stainless steel radar coolant-system assembly fabricated by torch brazing with AWS type 3A flux, failed at the brazed joint when subjected to mild handling before installation, after being stored for about two years. It was revealed by visual examination of the failed braze that the filler metal had not covered all mating surfaces. Lack of a metallurgical bond between the brazing alloy and stainless steel and instead mechanical bonding of the filler metal to an oxide layer on the stainless steel surface was revealed by examination of the broken joint at the cup. It was indicated by the thickness of the oxide layer that the steel surface was not protected from oxidation by the flux during torch heating. It was concluded that the failure was caused by lack of a metallurgical bond between the brazing alloy and the stainless steel. Components made of 347 stainless steel (better brazeability) brazed with a larger torch tip (wider heat distribution) and AWS type 3B flux (better filler-metal flow) were recommended for radar coolant-system assembly.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... of galvanic potentials is only a ranking of general susceptibility; it does not address all the conditions and factors that influence galvanic corrosion. Limitations on the use of galvanic series include: No information is available on the rate of corrosion Active-passive metals may display two...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
1