Skip Nav Destination
Close Modal
Search Results for
Nitric acid
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 105 Search Results for
Nitric acid
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001047
EISBN: 978-1-62708-214-3
... Abstract An E-Brite /Ferralium explosively bonded tube sheet in a nitric acid condenser was removed from service because of corrosion. Visual and metallographic examination of tube sheet samples revealed severe cracking in the heat-affected zone between the outer tubes and the weld joining...
Abstract
An E-Brite /Ferralium explosively bonded tube sheet in a nitric acid condenser was removed from service because of corrosion. Visual and metallographic examination of tube sheet samples revealed severe cracking in the heat-affected zone between the outer tubes and the weld joining the tube sheet to the floating skirt. Cracks penetrated deep into the tube sheet, and occasionally into the tube walls. The microstructures of both alloys and of the weld appeared normal. Intergranular corrosion characteristic of end-grain attack was apparent. A low dead spot at the skirt / tube sheet joint allowed the Nox to condense and subsequently reboil. This, coupled with repeated repair welding in the area, reduced resistance to acid attack. Intergranular corrosion continued until failure. Recommendations included changing operating parameter inlet to prevent HNO3 condensation outside the inlet and replacement of the floating skirt with virgin material (i.e., material unaffected by weld repairs).
Image
in Leaky Heating Coils of an Austenitic Chromium-Nickel-Molybdenum Steel
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 3 a). Etched in aqueous nitric acid 1:1 at 2 V for 3 min. Crack propagation, cross-section (Same area after different etching treatments). 200 × b). Etched in V 2 A pickling solution (50 ° C). Crack propagation, cross-section (Same area after different etching treatments). 200 ×
More
Image
Published: 01 January 2002
Fig. 30(b) Cold-etched (10% aqueous nitric acid) disk cut from the moil point shown in Fig. 30(a) . A nonuniform chill is evident; the dark areas are hardened. 2×
More
Image
Published: 01 January 2002
Fig. 46 Macroetched (10% aqueous nitric acid) face of a cutter blade made from AISI S7 steel. Macroetching reveals the influence of frictional heat from service (dark-etching areas) that produce localized back-tempering (softening).
More
Image
Published: 30 August 2021
Fig. 46 Macroetched (10% aqueous nitric acid) face of a cutter blade made from AISI S7 steel. Macroetching reveals the influence of frictional heat from service (dark-etching areas) that produces localized back tempering (softening).
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001399
EISBN: 978-1-62708-220-4
... Abstract An air compressor was installed at a chemical plant in which nitric acid was produced by burning ammonia with air. It was a 5000 hp, 5-stage centrifugal machine running at 6000 rpm, compressing air to 5 atm. Failure of the first stage impeller occurred due to a segment from the back...
Abstract
An air compressor was installed at a chemical plant in which nitric acid was produced by burning ammonia with air. It was a 5000 hp, 5-stage centrifugal machine running at 6000 rpm, compressing air to 5 atm. Failure of the first stage impeller occurred due to a segment from the back plate becoming detached. On the remaining portion, cracks were visible running between the holes for rivets by which the vanes were attached. Metallographic examination of selected sections from the backplate revealed the material to be in the hardened and tempered condition, and the cracking to have initiated on the internal surface of the plate at the crevice between the plate and the vane. It was evident that the impeller failed by stress-corrosion cracking, which initiated in the crevice between the vanes and back plate and propagated through the plate along the line of the rivets where working stresses would be greatest. The compressor intake was situated in the vicinity of nitric acid pumps which had a history of leakage troubles, and which had evidently given rise to the nitrates found on the impeller.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001655
EISBN: 978-1-62708-220-4
... and filled with nitric acid in preparation for service. Three weeks later the two acid tanks were found to be leaking from the bottom. Samples from the spent solvent tank revealed that pitting was located in a depressed area near a suction hole, beneath a black residue. It was concluded that the acid tanks...
Abstract
This investigation involved two AISI 304L acid storage tanks and one AISI 304L spent solvent tank from a sewage treatment facility. After installation, these tanks were hydrostatically tested using sewage effluent. No leaks were found and after a year or two, the tanks were drained and filled with nitric acid in preparation for service. Three weeks later the two acid tanks were found to be leaking from the bottom. Samples from the spent solvent tank revealed that pitting was located in a depressed area near a suction hole, beneath a black residue. It was concluded that the acid tanks failed by chloride-induced pitting initiated by microbial activity. Further, the spent solvent tank failed by a similar, but anaerobic mechanism. The use of the effluent for the hydrostatic test and the failure to remove it and clean and dry the tanks was the primary cause of failure. Localized carbide segregation in the original plate served as preferential corrosion sites. Had the tanks been hydrostatically tested in a proper manner, the pitting may not have occurred.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001066
EISBN: 978-1-62708-214-3
... been exposed to the process stream was discolored. Failure of the spool was attributed to stress-corrosion cracking promoted by the presence of nitrates. Nitric acid contaminant in the sulfuric acid stream had diffused through the liner and accumulated in the annular space. Use of a liner that is more...
Abstract
A flanged 100 mm (4 in.) diam low-carbon steel spool piece lined with Teflon was removed from a sulfuric acid denitrification system after cracks were observed in the painted coating. Visual and microstructural examination along with SEM fractography revealed scaled iron oxides on all opened crack surfaces. The surfaces had a faceted morphology, indicating intergranular fracture. Cracks originated at the interface between the tube and the Teflon liner Corrosion products were found caked into the intergranular region between the liner and the spool. The portion of the liner that had been exposed to the process stream was discolored. Failure of the spool was attributed to stress-corrosion cracking promoted by the presence of nitrates. Nitric acid contaminant in the sulfuric acid stream had diffused through the liner and accumulated in the annular space. Use of a liner that is more impermeable to the diffusion of ionic species was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091318
EISBN: 978-1-62708-217-4
.... Investigation (visual inspection, 95x unetched images, chemical testing with a 5% salt spray, chemical testing with sodium hypochlorite at three strength levels, samples were also pickled in an aqueous solution containing 15 vol% concentrated nitric acid (HNO3) and 3 vol% concentrated hydrofluoric acid (HF...
Abstract
Two freshwater tanks (0.81 mm (0.032 in) thick, type 321 stainless steel) were removed from aircraft service because of leakage due to pitting and rusting on the bottoms of the tanks. One tank had been in service for 321 h, the other for 10 h. There had been departures from the specified procedure for chemical cleaning of the tanks in preparation for potable water storage. The sodium hypochlorite sterilizing solution used was three times the prescribed strength, and the process exposed the bottom of the tanks to hypochlorite solution that had collected near the outlet. Investigation (visual inspection, 95x unetched images, chemical testing with a 5% salt spray, chemical testing with sodium hypochlorite at three strength levels, samples were also pickled in an aqueous solution containing 15 vol% concentrated nitric acid (HNO3) and 3 vol% concentrated hydrofluoric acid (HF) and were then immersed in the three sodium hypochlorite solutions for several days) supported the conclusion that failure of the stainless steel tanks by chloride-induced pitting resulted from using an overly strong hypochlorite solution for sterilization and neglecting to rinse the tanks promptly afterward. Recommendations included revising directions for sterilization and rinsing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091345
EISBN: 978-1-62708-220-4
... Abstract Beveled weld-joint V-sections were fabricated to connect inlet and outlet sections of tubes in a type 347 stainless steel heat exchanger for a nitric acid concentrator. Each V-section was permanently marked with the tube numbers by a small electric-arc pencil. After one to two years...
Abstract
Beveled weld-joint V-sections were fabricated to connect inlet and outlet sections of tubes in a type 347 stainless steel heat exchanger for a nitric acid concentrator. Each V-section was permanently marked with the tube numbers by a small electric-arc pencil. After one to two years of service, multiple leaks were observed in the heat-exchanger tubes. Investigation supported the conclusion that the corrosion occurred at two general locations: the stop point of the welds used to connect the inlet and outlet legs of the heat exchanger, and the stop points on the identifying numerals. Recommendations included replaced the material with type 304L stainless steel.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001362
EISBN: 978-1-62708-215-0
... Abstract Numerous cracks observed on the surface of a forged A470 Class 4 alloy steel steam turbine rotor disc from an air compressor in a nitric acid plant were found to be the result of caustic induced stress-corrosion cracking (SCC). No material defects or anomalies were observed in the disc...
Abstract
Numerous cracks observed on the surface of a forged A470 Class 4 alloy steel steam turbine rotor disc from an air compressor in a nitric acid plant were found to be the result of caustic induced stress-corrosion cracking (SCC). No material defects or anomalies were observed in the disc sample that could have contributed to crack initiation or propagation or secondary crack propagation. Chlorides detected in the fracture surface deposits were likely the primary cause for the pitting observed on the disc surfaces and within the turbine blade attachment area. It was recommended that the potential for water carryover or feedwater induction into the turbine be addressed via an engineering evaluation of the plant's water treatment procedures, steam separation equipment, and start-up procedures.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001311
EISBN: 978-1-62708-215-0
... in the base metal immediately adjacent to the weld seam. The corrosion was attributed to exposure to nitric acid cleaning solution and was accelerated by galvanic differences between the tubes and a stainless steel tube sheet and between the base metal of the tubes and their dendritic weld seams. A change...
Abstract
Several nickel-base superalloy (UNS N06600) welded heat-exchanger tubes used in processing black liquor in a kraft paper mill failed prematurely. Leaking occurred through the tube walls at levels near the bottom tube sheet. The tubes had been installed as replacements for type 304 stainless steel tubes. Visual and stereoscopic examination revealed three types of corrosion on the inside surfaces of the tubes: uniform attack, deeper localized corrosive attack, and accelerated uniform attack. Metallographic analysis indicated that pronounced dissimilar-metal corrosion had occurred in the base metal immediately adjacent to the weld seam. The corrosion was attributed to exposure to nitric acid cleaning solution and was accelerated by galvanic differences between the tubes and a stainless steel tube sheet and between the base metal of the tubes and their dendritic weld seams. A change to type 304 stainless steel tubing made without dendritic weld seams was recommended.
Image
Published: 15 January 2021
of iron (and steel) in nitric acid in concentrations of 70% or higher, although low compared to the maximum rate, is sufficient to make it unsafe to ship or store nitric acid in these metals. Source: Ref 12
More
Image
Published: 01 January 2002
of iron (and steel) in nitric acid in concentrations of 70% or higher, although low compared to the maximum rate, is sufficient to make it unsafe to ship or store nitric acid in these metals. Source: Ref 12
More
Image
in Stress-Rupture Characterization in Nickel-Based Superalloy Gas Turbine Engine Components
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 14 Creep voids forming near the trailing edge of SX turbine blade casting at ∼ 5% airfoil span. Casting contains no grain boundaries. Etchant: 33% glycerol, 33% nitric acid, 33% acetic acid, and 1–3% hydrofluoric acid
More
Image
Published: 15 January 2021
Fig. 12 Creep voids forming near the trailing edge of single-crystal turbine blade casting at ~5% airfoil span. Etchant: 33% glycerol, 33% nitric acid, 33% acetic acid, and 1–3% hydrofluoric acid. Casting contains no grain boundaries. Source: Ref 20
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001809
EISBN: 978-1-62708-241-9
... a Iron content should not exceed the nickel content Fig. 3 Typical microstructure in bulk material containing mostly alpha phase ( a ) 100× and ( b ) 500×, etchant: 45 mL nitric acid and 45 mL acetic acid Fig. 4 Selectively attacked region near the surface contained dealloying...
Abstract
A brackish water pump impeller was replaced after four years of service, while its predecessor lasted over 40 years. The subsequent failure investigation determined that the nickel-aluminum bronze impeller was not properly heat treated, which made the impeller susceptible to aluminum dealloying. The dealloying corrosion was exacerbated by erosion because the pump was slightly oversized. The investigation recommended better heat treating procedures and closer evaluation to ensure that new pumps are properly sized.
Image
Published: 01 December 2019
Fig. 3 Typical microstructure in bulk material containing mostly alpha phase ( a ) 100× and ( b ) 500×, etchant: 45 mL nitric acid and 45 mL acetic acid
More
Image
in Stress-Rupture Characterization in Nickel-Based Superalloy Gas Turbine Engine Components
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
) is γ ′ . Matrix is the lighter γ phase. Etchant: 33% glycerol, 33% nitric acid, 33% acetic acid, and 1–3% hydrofluoric acid
More
Image
Published: 01 December 2019
Fig. 6 SEM image revealed selective grain attack and dealloying, etchant: 45 mL nitric acid and 45 mL acetic acid. The aluminum concentration was significantly lower than in the bulk material in the area of grain attack
More
1