Skip Nav Destination
Close Modal
By
K.H. Subramanian, C.F. Jenkins
By
Richard L. Colwell
By
Tim Mueller, Neil Burns
Search Results for
Nitrates
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 80
Search Results for Nitrates
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Explosion of the Terra Ammonium Nitrate Plant, Port, Neal, Iowa
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001584
EISBN: 978-1-62708-236-5
... Abstract On 13 Dec 1994, two massive detonations leveled portions of an ammonium nitrate plant near Sioux City, IA. The primary explosion allegedly occurred in defectively-designed titanium sparger piping inside the neutralizer vessel. Investigation however, revealed the explosion occurred...
Abstract
On 13 Dec 1994, two massive detonations leveled portions of an ammonium nitrate plant near Sioux City, IA. The primary explosion allegedly occurred in defectively-designed titanium sparger piping inside the neutralizer vessel. Investigation however, revealed the explosion occurred because of unsafe plant operations and poor maintenance procedures. Specifically, the ammonium nitrate within the 18,000 gal capacity neutralizer vessel had become contaminated and made highly acidic. The operators then injected superheated steam directly into the ammonium nitrate in the neutralizer vessel.
Book Chapter
Stress-Corrosion Cracking of Carbon Steel Hoppers by Ammonium Nitrate Solution
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0091598
EISBN: 978-1-62708-218-1
... Abstract After 10 to 20 months of service, the carbon steel hoppers on three trucks used to transport bulk ammonium nitrate prills developed extensive cracking in the upper walls. The prills were discharged from the steel hoppers using air superchargers that generated an unloading pressure...
Abstract
After 10 to 20 months of service, the carbon steel hoppers on three trucks used to transport bulk ammonium nitrate prills developed extensive cracking in the upper walls. The prills were discharged from the steel hoppers using air superchargers that generated an unloading pressure of approximately 11 kPa (7 psi). Each hopper truck held from 9,100 to 11,800 kg (10 to 13 tons) of prills when fully loaded and handled approximately 90,700 kg (100 tons) per month. The walls of the hoppers were made of 2.7 mm (0.105 in.) thick flat-rolled carbon steel sheet of structural quality, conforming to ASTM A 245 (obsolete specification replaced by A 570 and A 611). Investigation (visual inspection and 100x micrographs polished and etched with nital) supported the conclusion that failure of the hoppers was the result of intergranular SCC of the sheet-steel walls because of contact with a highly concentrated ammonium nitrate solution. Recommendations included the cost-effective solution of applying a three-coat epoxy-type coating with a total dry thickness of 0.3 mm (0.013 in.) to the interior surfaces of the hoppers.
Image
Decomposition to explosion — Ammonium nitrate decomposition and explosion i...
Available to Purchase
in Explosion of the Terra Ammonium Nitrate Plant, Port, Neal, Iowa
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 2 Decomposition to explosion — Ammonium nitrate decomposition and explosion in neutralizer.
More
Image
in Explosion of the Terra Ammonium Nitrate Plant, Port, Neal, Iowa
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 5 Full scale neutralizer tank test with ammonium nitrate.
More
Image
Pipe coupling cracked after immersion in 1.5% mercuric nitrate solution. 0....
Available to Purchase
in Stress Cracks in Brass Pipe Couplings
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 7 Pipe coupling cracked after immersion in 1.5% mercuric nitrate solution. 0.8×
More
Image
in Analysis and Subsequent Testing of Cracked Brass Connector Housings
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 6 Image of exemplar connectors after mercurous nitrate testing
More
Book Chapter
Stress-Corrosion Cracking of Aerial Plant Fuses
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0006898
EISBN: 978-1-62708-233-4
... Abstract Several fuses made of nickel silver (57 to 61% Cu, 11 to 13% Ni, bal Zn) exposed to air containing ammonium and nitrate ions failed by SCC. Test solutions of 1 N ammonium nitrate (NH4NO3) and a 1:1 mixture of 1 N sodium nitrate (NaNO3) and 1 N calcium nitrate (Ca(NO3) 2) were prepared...
Abstract
Several fuses made of nickel silver (57 to 61% Cu, 11 to 13% Ni, bal Zn) exposed to air containing ammonium and nitrate ions failed by SCC. Test solutions of 1 N ammonium nitrate (NH4NO3) and a 1:1 mixture of 1 N sodium nitrate (NaNO3) and 1 N calcium nitrate (Ca(NO3) 2) were prepared. In addition, stressed fuses made of nickel silver and of cupro-nickel (80Cu-20Ni) were exposed to a drop of corrosive solution in the stressed area. All nickel silver specimens failed after two days of exposure to NH4NO3 solution. However, 17% of them failed and 67% showed crack initiation but no failure after 42 days of exposure to NaNO3 + Ca(NO3)2 solution. None of the cupro-nickel specimens failed, but among those exposed to NH4NO3, 17% displayed crack initiation and 83% showed partial dealloying after 42 days. Based on the test results, the fuse material was changed from nickel silver to cupro-nickel, solving the SCC problem.
Book Chapter
Crevice-Corrosion Failure of Evaporator Tubes Because of Defective Seam Welds
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0047611
EISBN: 978-1-62708-220-4
... Abstract Several tubes in a tube bundle in an evaporator used to concentrate an acid nitrate solution failed by leakage. The feed to the evaporator contained about 6% nitrate, and the discharge about 60% nitrate. The tube bundle was comprised of type 309S (Nb) stainless steel drawn-and-welded...
Abstract
Several tubes in a tube bundle in an evaporator used to concentrate an acid nitrate solution failed by leakage. The feed to the evaporator contained about 6% nitrate, and the discharge about 60% nitrate. The tube bundle was comprised of type 309S (Nb) stainless steel drawn-and-welded tubes expanded and welded into two type 304L stainless steel tube sheets. The tubes failed by crevice corrosion. The failed tubes were defective as-received, and the establishment of concentration cells within the longitudinal cracks in the seam welds led to ultimate corrosive penetration of the wall. There was no evidence of crevice corrosion or any localized penetration of tubes that had sound welds. The leaking type 309S (Nb) welded tubes should be replaced with seamless tubes of type 304L stainless steel to minimize the areas requiring welding and to provide maximum weldability for the tube-sheet joints.
Book Chapter
Failure Analysis of High-Level Radioactive Waste Tank Purge
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001832
EISBN: 978-1-62708-241-9
... Abstract High-level radioactive wastes generated during the processing of nuclear materials are kept in large underground storage tanks made of low-carbon steel. The wastes consist primarily of concentrated solutions of sodium nitrate and sodium hydroxide. Each of the tanks is equipped...
Abstract
High-level radioactive wastes generated during the processing of nuclear materials are kept in large underground storage tanks made of low-carbon steel. The wastes consist primarily of concentrated solutions of sodium nitrate and sodium hydroxide. Each of the tanks is equipped with a purge ventilation system designed to continuously remove hydrogen gas and vapors without letting radionuclides escape. Several intergranular cracks were discovered in the vent pipe of one such system. The pipe, made of galvanized steel sheet, connects to an exhaust fan downstream of high-efficiency particulate air filters. The failure analysis investigation concluded that nitrate-induced stress-corrosion cracking was the cause of the failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091690
EISBN: 978-1-62708-234-1
... commonly used ferrule was 3.5 cm long by 7.5 cm in diam and was drawn from 0.5 mm (0.020 in.) thick strip. Investigation (visual inspection, metallographic examination, and a mercurous nitrate test, which is an accelerated test used to detect residual stress in copper and copper alloys) of both ferrules...
Abstract
A substantial number of copper alloy C27000 (yellow brass, 65Cu-35Zn) ferrules for electrical fuses cracked while in storage and while in service in paper mills and other chemical processing plants. The ferrules, made by three different manufacturers, were of several sizes. One commonly used ferrule was 3.5 cm long by 7.5 cm in diam and was drawn from 0.5 mm (0.020 in.) thick strip. Investigation (visual inspection, metallographic examination, and a mercurous nitrate test, which is an accelerated test used to detect residual stress in copper and copper alloys) of both ferrules from fuses in service and storage in different types of plants, and ferrules from newly manufactured fuses, supported the conclusion that the ferrules failed by SCC resulting from residual stresses induced during forming and the ambient atmospheres in the chemical plants. The atmosphere in the paper mills was the most detrimental, and the higher incidence of cracking of ferrules there was apparently related to a higher concentration of ammonia in conjunction with high humidity. Recommendations included specifying that the fuses meet the requirements of ASTM B 154.
Book Chapter
Stress-Corrosion Cracking of Copper Alloy Tube Sheet
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091694
EISBN: 978-1-62708-220-4
... because of unrelated tube failures. Sanitary (chlorinated) well water was generally used in the system, although filtered process make-up water (river water) containing ammonia was occasionally used. Investigation (visual inspection, chemical analysis, mercurous nitrate testing, unetched 5X micrographs...
Abstract
Tube sheets (found to be copper alloy C46400, or naval brass, and 5 cm (2 in.) thick) of an air compressor aftercooler were found to be cracked and leaking approximately 12 to 14 months after they had been retubed. Most of the tube sheets had been retubed several times previously because of unrelated tube failures. Sanitary (chlorinated) well water was generally used in the system, although filtered process make-up water (river water) containing ammonia was occasionally used. Investigation (visual inspection, chemical analysis, mercurous nitrate testing, unetched 5X micrographs, and 250X micrographs etched in 10% ammonium persulfate solution) supported the conclusion that the tube sheets failed by SCC as a result of the combined action of internal stresses and a corrosive environment. The internal stresses had been induced by retubing operations, and the environment had become corrosive when ammonia was introduced into the system by the occasional use of process make-up water. Recommendations included making a standard procedure to stress relieve tube sheets before each retubing operation. The stress relieving should be done by heating at 275 deg C (525 deg F) for 30 min and slowly cooling for 3 h to room temperature.
Book Chapter
Stress Corrosion Failure of Impeller of Centrifugal Air Compressor
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001399
EISBN: 978-1-62708-220-4
... stresses would be greatest. The compressor intake was situated in the vicinity of nitric acid pumps which had a history of leakage troubles, and which had evidently given rise to the nitrates found on the impeller. Air compressors Chlorides Corrosion environments Impellers Nitric acid Pumps Fe...
Abstract
An air compressor was installed at a chemical plant in which nitric acid was produced by burning ammonia with air. It was a 5000 hp, 5-stage centrifugal machine running at 6000 rpm, compressing air to 5 atm. Failure of the first stage impeller occurred due to a segment from the back plate becoming detached. On the remaining portion, cracks were visible running between the holes for rivets by which the vanes were attached. Metallographic examination of selected sections from the backplate revealed the material to be in the hardened and tempered condition, and the cracking to have initiated on the internal surface of the plate at the crevice between the plate and the vane. It was evident that the impeller failed by stress-corrosion cracking, which initiated in the crevice between the vanes and back plate and propagated through the plate along the line of the rivets where working stresses would be greatest. The compressor intake was situated in the vicinity of nitric acid pumps which had a history of leakage troubles, and which had evidently given rise to the nitrates found on the impeller.
Book Chapter
Stress-Corrosion Cracking of a Teflon-Lined Steel Pipe in Sulfuric Acid Service
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001066
EISBN: 978-1-62708-214-3
... been exposed to the process stream was discolored. Failure of the spool was attributed to stress-corrosion cracking promoted by the presence of nitrates. Nitric acid contaminant in the sulfuric acid stream had diffused through the liner and accumulated in the annular space. Use of a liner that is more...
Abstract
A flanged 100 mm (4 in.) diam low-carbon steel spool piece lined with Teflon was removed from a sulfuric acid denitrification system after cracks were observed in the painted coating. Visual and microstructural examination along with SEM fractography revealed scaled iron oxides on all opened crack surfaces. The surfaces had a faceted morphology, indicating intergranular fracture. Cracks originated at the interface between the tube and the Teflon liner Corrosion products were found caked into the intergranular region between the liner and the spool. The portion of the liner that had been exposed to the process stream was discolored. Failure of the spool was attributed to stress-corrosion cracking promoted by the presence of nitrates. Nitric acid contaminant in the sulfuric acid stream had diffused through the liner and accumulated in the annular space. Use of a liner that is more impermeable to the diffusion of ionic species was recommended.
Book Chapter
Stress-Corrosion Cracking of Type 316 Stainless Steel Tubing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091631
EISBN: 978-1-62708-229-7
... water. To check for chlorides, the inside of the tubing was rinsed with distilled water, and the rinse water was collected in a clean beaker. A few drops of silver nitrate solution were added to the rinse water, which clouded slightly because of the formation of insoluble silver chloride...
Abstract
A steam-condensate line (type 316 stainless steel tubing) began leaking after five to six years in service. The line carried steam condensate at 120 deg C (250 deg F) with a two hour heat-up/cool-down cycle. No chemical treatment had been given to either the condensate or the boiler water. To check for chlorides, the inside of the tubing was rinsed with distilled water, and the rinse water was collected in a clean beaker. A few drops of silver nitrate solution were added to the rinse water, which clouded slightly because of the formation of insoluble silver chloride. This and additional investigation (visual inspection, and 250x micrograph etched with aqua regia) supported the conclusion that the tubing failed by chloride SCC. Chlorides in the steam condensate also caused corrosion of the inner surface of the tubing. Stress was produced when the tubing was bent during installation. Recommendations included providing water treatment to remove chlorides from the system. Continuous flow should be maintained throughout the entire tubing system to prevent concentration of chlorides. No chloride-containing water should be permitted to remain in the system during shutdown periods, and bending of tubing during installation should be avoided to reduce residual stress.
Book Chapter
Stress-Corrosion Cracking of Copper Absorber Tubes in an Air-Conditioning Unit
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091699
EISBN: 978-1-62708-219-8
.... However, an electron probe microanalysis performed on a microspecimen did not reveal any mercury at or near the cracks. Chemical analysis of the lithium bromide solution revealed significant quantities of nitrates in the solution. Such nitrates are normally added to the lithium bromide solution to act...
Abstract
Eddy-current inspection was performed on a leaking absorber bundle in an absorption air-conditioning unit. The inspection revealed crack-like indications in approximately 50% of the tubes. The tube material was phosphorus-deoxidized copper. Investigation (visual inspection, chemical analysis, 0.75x images, 2x macrographs after light acid cleaning to remove corrosion product, and 75x micrographs) supported the conclusion that the absorber tubes failed by SCC initiated by ammonia contamination in the lithium bromide solution. No recommendations were made.
Book Chapter
Analysis and Subsequent Testing of Cracked Brass Connector Housings
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001806
EISBN: 978-1-62708-241-9
... additional aggressive species and verify the presence of sulfur observed via energy dispersive spectroscopy. Very small quantities of nitrate and nitrite were present, with sulfate and chloride present in greater amounts. The small amounts of nitrate/nitrite indicate that ammonia is not likely to have caused...
Abstract
Coaxial cable connectors made of brass were failing at a high rate after less than one year of service in an outdoor industrial environonment. The observed failures, which consisted of cracks in the body and end cap, were analyzed and found to be brittle fractures due to stress-corrosion cracking. Two common stress-corrosion cracking tests for copper materials were conducted on new connectors from the same manufacturing lot, confirming the initial determination of the fracture mode. Additional testing as was done in the investigation is often helpful when analyzing corrosion failures.
Book Chapter
Stress-Corrosion Cracking of Admiralty Brass Condenser Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091807
EISBN: 978-1-62708-229-7
... in the operating system and on test coupons exposed to the operating environment. Nitrate-reducing bacteria from the lakewater used in cooling were found to produce high levels of ammonia (5.8 mg/L) when established in biofilms. Ammonia levels at the metal surface were 300 times higher than background levels...
Abstract
Failures occurred in admiralty brass condenser tubes in a nuclear plant cooled by freshwater. About 2500 tubes had to be replaced over a span of six years. Investigation (visual inspection, chemical analysis, water chemistry (for both intake and outfall), and corrosion products in the operating system and on test coupons exposed to the operating environment) supported the conclusion that the failure was caused by microbe-initiated SCC. No recommendations were made.
Book Chapter
Failure of Non-Magnetic Rotor Banding Wire From Stress-Corrosion
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001397
EISBN: 978-1-62708-235-8
... exposed in a stressed condition to certain chemical environments, particularly those containing chlorides. In order to investigate this possibility, the samples were washed with hot water and the resulting extract gave definite indications of chlorides, but none of sulphates or nitrates. Careful visual...
Abstract
Banding wires of the rotor of an 1800 hp motor were renewed following replacement of the banding rings. After about six months of service, a breakdown occurred due to bursting of the banding wires in several places. The 0.064 in. diam wire was nonmagnetic and of the 18/8 Cr-Ni type of austenitic stainless steel. The fractures were short and partially crystalline, with no evidence of slowly developing cracks of the fatigue type. Microscopical examination of sections taken through the fractures showed the cracking to be of the multiple branching type. Because the material was in the heavily cold-worked condition, it was not possible to determine with certainty if the cracks were of the inter- or trans-granular type. It was concluded that failure was due to stress-corrosion cracking in a chloride environment. Failure of the wires was likely due to the use of a chloride-containing flux during the soldering operation.
Image
Micrograph of stress-corrosion cracking (arrows) that occurred in a concent...
Available to PurchasePublished: 15 January 2021
Fig. 23 Micrograph of stress-corrosion cracking (arrows) that occurred in a concentrated ammonium nitrate solution. Original magnification: 100×
More
Image
Nital-etched specimen of ASTM A 245 carbon steel. Micrograph shows SCC that...
Available to PurchasePublished: 01 January 2002
Fig. 21 Nital-etched specimen of ASTM A 245 carbon steel. Micrograph shows SCC that occurred in a concentrated solution of ammonium nitrate. 100×
More
1