Skip Nav Destination
Close Modal
Search Results for
Molybdenum disulfide
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4 Search Results for
Molybdenum disulfide
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001831
EISBN: 978-1-62708-241-9
... packed with molybdenum disulfide (MoS 2 ) lithium grease. Metallurgical structures and chemical compositions of the bearing’s matrix materials were inspected using a microscope and photoelectric direct reading spectrometer. SEM/EDS was used to examine the local morphology and composition of fracture and...
Abstract
An air blower in an electric power plant failed unexpectedly when a roller bearing in the drive motor fractured along its outer ring. Both rings, as well as the 18 rolling elements, were made from GCr15 bearing steel. The bearing also included a machined brass (MA/C3) cage and was packed with molybdenum disulfide (MoS 2 ) lithium grease. Metallurgical structures and chemical compositions of the bearing’s matrix materials were inspected using a microscope and photoelectric direct reading spectrometer. SEM/EDS was used to examine the local morphology and composition of fracture and contact surfaces. Chemical and thermal properties of the bearing grease were also examined. The investigation revealed that the failure was caused by wear due to dry friction and impact, both of which worsened as a result of high-temperature degradation of the bearing grease. Fatigue cracks initiated in the corners of the outer ring and grew large enough for a fracture to occur.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0046388
EISBN: 978-1-62708-224-2
.... Recommendations included hardening and tempering the bolts to the hardness range of 375 to 430 HRB. The thimbles should be heat treated to a similar microstructure and the same hardness range as those of the bolt. Molybdenum disulfide lubricant can be liberally applied during the initial installation of the bolts...
Abstract
The bolt in a bolt and thimble assembly used to connect a wire rope to a crane hanger bracket was worn excessively. Two worn bolts, one new bolt, and a new thimble were examined. Specifications required the bolts to be made of 4140 steel heat treated to a hardness of 277 to 321 HRB. Thimbles were to be made of cast 8625 steel, but no heat treatment or hardness were specified. Analysis (visual inspection, hardness testing, and metallographic examination) supported the conclusion that the wear was due to strikingly difference hardness measurements in the bolt and thimble. Recommendations included hardening and tempering the bolts to the hardness range of 375 to 430 HRB. The thimbles should be heat treated to a similar microstructure and the same hardness range as those of the bolt. Molybdenum disulfide lubricant can be liberally applied during the initial installation of the bolts. A maintenance lubrication program was not suggested, but galling could be reduced by periodic application of a solid lubricant.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001030
EISBN: 978-1-62708-214-3
... molybdenum disulfide and moisture resulted in weak sulfurous acid, which further accelerated SCC by nature of its corrosive action. The purpose of specifying interference-fit fasteners as a structural enhancement in this case was to increase fatigue life by reducing the stress-concentration factors...
Abstract
Cracks were discovered between interference-fit fasteners (MoS2-coated Ti-6Al-4V) that had been incorporated into a fighter aircraft primary structural frame (D6ac steel) to enhance structural fatigue life. Examination of sections cut from the cracked frame established that the cracks propagated by stress-corrosion cracking. The cause of cracking was twofold: use of interference-fit fasteners exposed to moisture intrusion from a marine environment and poor hole quality. Failure was intensified by dissimilar-metal contact in the presence of weak acidic electrolyte (dissociated MoS2). Control of machining parameters to prevent formation of brittle martensite, use of galvanically compatible fasteners, and use of an alternate lubricant were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001620
EISBN: 978-1-62708-229-7
... with as low a coefficient of friction as possible. This can be accomplished by ensuring good lubrication between the faying surfaces. When a plain lubricant is ineffective in reducing fretting, the addition of low-friction-type material, such as molybdenum disulfide, to a liquid or grease lubricant may...
Abstract
Two vertical coal-pulverizer shafts at a coal-fired generation station failed after four to five years in service. One shaft was completely broken, and the other was unbroken but cracked at both ends. shaft material was AISI type 4340 Ni-Cr- Mo alloy steel, with a uniform hardness of approximately HRC 27. Metallographic examination of transverse sections through the surface-damaged areas adjacent to the cracks also showed additional small cracks growing at an angle of approximately 60 deg to the surface. The crack propagation mode appeared to be wholly transgranular. SEM examination revealed finely spaced striations on the crack surfaces, supporting a diagnosis of fatigue cracking. Crack initiation in the pulverizer shafts started as a result of fretting fatigue. Greater attention to lubrication was suggested, combined with asking the manufacturer to consider nitriding the splined shaft. It was suggested that the surfaces be securely clamped together and that an in-service maintenance program be initiated to ensure that the tightness of the clamping bolts was verified regularly.