Skip Nav Destination
Close Modal
Search Results for
Mixed-mode fracture
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 177 Search Results for
Mixed-mode fracture
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 12 Mixed mode fracture in a mild carbon steel cooled just to the ductile/brittle transition
More
Image
Published: 15 January 2021
Fig. 12 Mixed-mode fracture in a mild carbon steel cooled just to the ductile/brittle transition
More
Image
in Failure Analysis Case Study on a Fractured Tailwheel Fork
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Image
in Caustic-Induced Stress-Corrosion Cracking of a Flue Gas Expansion Joint
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 5 (a) Mixed-mode cracking in cross section. Fry's reagent, 308×. (b) Fracture surface in cross section. Fry's reagent. 308×.
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
... of deleterious intermetallic compounds within interdendritic regions. Macrohardness testing produced hardness values which are noticeably higher than standard hardness values for 712.0. The primary fracture surfaces indicate evidence of mixed-mode fracture, via intergranular cracking, cleaved intermetallic...
Abstract
A failure analysis investigation was conducted on a fractured aluminum tailwheel fork which failed moments after the landing of a privately owned, 1955 twin-engine airplane. Nondestructive evaluation via dye-penetrant inspection revealed no discernible surface cracks. The chemical composition of the sand-cast component was identified via optical emission spectroscopy and is comparable to an aluminum sand-cast alloy, AA 712.0. Metallographic evaluation via optical microscopy and scanning electron microscopy revealed a high degree of porosity in the microstructure as well as the presence of deleterious intermetallic compounds within interdendritic regions. Macrohardness testing produced hardness values which are noticeably higher than standard hardness values for 712.0. The primary fracture surfaces indicate evidence of mixed-mode fracture, via intergranular cracking, cleaved intermetallic particles, and dimpled cellular regions in the matrix. The secondary fracture surface demonstrates similar features of intergranular fracture.
Image
Published: 01 January 2002
Fig. 46 Fisheyes in E7018 weld metal. (a) Fisheyes in as-welded tensile specimen tested at room temperature. Optical macrograph. (b) Mixed-mode fracture in as-welded three-point bend test specimen at room temperature (SEM). Optical fractograph
More
Image
Published: 30 August 2021
Fig. 14 (a) Brittle fisheyes appear as bright spots in gray ductile matrix. Original magnification: 1.7×. (b) Mixed-mode fracture in as-welded three-point bend-test specimen at room temperature (scanning electron microscope). Optical fractography. Original magnification: 1500×
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0090943
EISBN: 978-1-62708-219-8
... review of the potential root cause. Weld repairs Worm gears Manganese bronze Mixed-mode fracture A very large diameter worm gear that had been in service in a dam for more than 60 years exhibited cracks and was removed. It was reported that the cast bronze gear was only rarely stressed...
Abstract
A very large diameter worm gear that had been in service in a dam for more than 60 years exhibited cracks and was removed. It was reported that the high-strength, low-ductility cast bronze gear was only rarely stressed during service, associated with infrequent opening and closing of gates. Due to the age of the gear and the time frame of its manufacture, no original material specifications or strength requirements could be located. Likewise, no maintenance records of possible repairs to the gear were available. Investigation (visual inspection, chemical analysis, tension and hardness testing, 119x SEM images, and potassium dichromate etched 297x metallographic images) supported the conclusion that the bronze gear cracked via mixed-mode overload, rather than by a progressive mechanism such as fatigue or stress-corrosion cracking. The cracking was not associated with regions that would be highly stressed and did not appear to be consistently correlated to casting imperfections, repair welds, or associated heat-affected zones. Cracking across the gear face suggested that bending forces from misalignment were likely responsible for the cracking. Recommendations included further review of the potential root cause.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001035
EISBN: 978-1-62708-214-3
..., adjacent to the keyway. Fig. 6 SEM micrograph of flat fracture characterstics in the area shown in Fig. 5 , composed of cleavage with river patterns. 4000×. Surprisingly, when the rough central area of the axle fracture was examined, a mixed mode of fracture—both brittle cleavage facets...
Abstract
Following an accident in which a light pickup truck left the road and overturned, one of the rear axles, made of approximately 0.30C steel, was found to be fractured adjacent to the bearing lock nut. A keyway was present in the failed area, as were threads for the lock nut. Fracture surfaces of the failed axle and exemplar fractures obtained from simulation tests were studied using scanning electron microscope. The examination showed that the outer perimeter fracture in the axle was very flat and composed of cleavage and that the interior portion was composed of both cleavage and dimples. No evidence of prior cracking was found. The exemplar specimens from the simulation impact testing failed in a manner consistent with that observed in the axle. The examination confirmed that the failure was a one-time impact overload fracture and not the result of any prior crack in the material, indicating that the axle failure did not initiate the accident.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089338
EISBN: 978-1-62708-224-2
... Mixed-mode fracture A steel lifting eye that had fractured during service is shown in Fig. 1 . No additional service-related information was provided. The eye was reportedly manufactured from a grade 1144 steel and should exhibit a minimum tensile strength of 689 MPa (100 ksi). Fig. 1 Steel...
Abstract
A steel lifting eye, manufactured from grade 1144 steel, failed during service. The eye ring fractured in two places, adjacent to the threaded shank and diametrically opposite to this region. Woody overload features, typical for resulfurized steels were revealed by SEM. The directionality of the features was found to be suggestive of shear overload. It was observed that fracture preferentially followed the nonmetallic inclusions. The fracture was revealed to be parallel to the direction of the manganese sulfide stringer inclusions. The presence of significant banding of the ferrite and pearlite microstructure was revealed by etching. It was also observed that the fracture is primarily along the inclusions and through bands of ferrite. It was concluded that the lifting eye failed as a result of overload. Fracture occurred parallel to the rolling direction, through manganese-sulfide stringers and ferrite bands in the base metal matrix. The material used for this application was very anisotropic, exhibiting substantially poorer long and short transverse mechanical properties than longitudinal properties.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0090988
EISBN: 978-1-62708-236-5
... treatment, that may have contributed to this failure. Bursting strength Cylinder pipe Decarburization 1045 UNS G10450 Mixed-mode fracture A jack cylinder split open during simulated service testing ( Fig. 1a ). The intended internal test pressurization was reportedly analogous to typical...
Abstract
A jack cylinder split open during simulated service testing. The intended internal test pressurization was reportedly analogous to typical service. The material and mechanical properties of the cylinder pipe were unknown, although subsequent testing showed that the pipe satisfied the requirements for a grade 1045 medium-carbon, plain carbon steel. Investigation (visual inspection, chemical analysis, 2% nital etched 119x images, and tension testing) supported the conclusion that the cylinder pipe burst in a mixed brittle-ductile manner due to overpressurization. It is likely that the bearing strength of the pipe was slightly compromised by a low-strength layer of decarburization. Recommendations included evaluating the testing procedure for the possibility of inadvertent overpressurization and analyzing successfully tested cylinders to identify changes in material, and perhaps heat treatment, that may have contributed to this failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0089663
EISBN: 978-1-62708-229-7
... Precipitates Steam turbines ASTM A356 grade 6 UNS J12073 Casting-related failures Mixed-mode fracture When a crack developed in a cast steel steam-turbine casing, a small section of the casing was removed by torch cutting to examine the crack completely and to determine its origin. The crack...
Abstract
A crack was discovered in a cast steel (ASTM A 356, grade 6) steam turbine casing during normal overhaul of the turbine. The mechanical properties of the casting all exceeded the requirements of the specification. When the fracture surface was examined visually, an internal-porosity defect was observed adjoining a tapped hole. A second, much larger cavity was also detected. Investigation (visual inspection and 7500x SEM fractographs) supported the conclusions that failure occurred through a zone of structural weakness that was caused by internal casting defects and a tapped hole. The combination of cyclic loading (thermal fatigue), an aggressive service environment (steam), and internal defects resulted in gradual crack propagation, which was, at times, intergranular-with or without corrosive attack-and, at other times, was transgranular.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001173
EISBN: 978-1-62708-218-1
... Hydrogen damage and embrittlement Mixed-mode fracture For many years ball joints used in heavy vehicle steering joints had given satisfactory service. Suddenly, some failed a few hours after being fitted but before the vehicle had gone into service. Failure occurred in the necked part...
Abstract
Ball joints made from carburized En 353 (BS970:815A16) steel failed after several hours of being fitted into vehicles. The parts were forged, machined, and thread rolled. The threads were copper plated to prevent carburization. The heat treatment consisted of carburizing in a cyanide bath for 12 hours at 930 deg C. After tempering for 2 h at 170 to 175 deg C, the copper plate was removed by immersing in an acid bath for 45 min. The investigations found the microstructure, hardness, and chemistry all met the specification. The case depth was approximately 0.75 mm to 1.0 mm. The SEM studies showed that it was a brittle fracture and completely intergranular to a depth of about 2.5 mm. It was concluded that the failure was due to hydrogen embrittlement for the following reasons: (i) failure did not occur immediately after loading, (ii) the fracture was intergranular to a depth of two to three times the case depth, (iii) secondary cracks were observed at the surface. The hydrogen was introduced during copper plate removal by acid dipping. If the tempering operation was performed after the acid dip operation, the hydrogen would have been driven out.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0049797
EISBN: 978-1-62708-235-8
... was thus attributed to the presence of the quench crack flaw caused by an improper machining sequence and heat treatment practice. Connecting rods Quench cracking Threads 4340 UNS G43400 Mixed-mode fracture An AISI 4340 threaded steel connecting rod was part of a connecting linkage used...
Abstract
An AISI 4340 threaded steel connecting rod that was part of a connecting linkage used between a parachute and an instrumented drop test assembly fractured under high dynamic loading when the assembly was dropped from an airplane. A large flaw that originated from the root of a machined thread groove was visible on the fracture surface. Heavy oxidation at elevated temperatures was indicated as most of the surface of the flaw was black. Fine secondary cracks aligned transverse to the growth direction was revealed by scanning electron microscopy. It was established that intergranular cracking observed in this alloy was caused during heat treating as the thread root served as an effective stress concentration and induced quench cracking. It was found that fracture in the overload region occurred by a ductile void growth and coalescence process. Premature failure of the threaded rod was thus attributed to the presence of the quench crack flaw caused by an improper machining sequence and heat treatment practice.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001585
EISBN: 978-1-62708-231-0
... fracture with short-term exposure to an oxygen-rich environment. Fracture features emanated from longitudinally-aligned inclusions rich in aluminum. Inclusions Rails (railroad) Carbon-manganese steel Mixed-mode fracture The National Transportation Safety Board simultaneously investigates...
Abstract
On 15 March 2000, a National Railroad Passenger Corporation (Amtrak) train traveling from Chicago to Los Angeles derailed in Carbondale, KS. After the initial on-scene investigation, 12 pieces of rail were sent to the materials laboratory for examination. Ten of them were from the point of derailment (POD). A vertical crack was observed in the head of the rail (vertical split head). The crack was at least 233 in. (591 cm) long, continuing through the entire lengths of most pieces recovered from the POD. The vertical fracture surface had features consistent with overstress fracture with short-term exposure to an oxygen-rich environment. Fracture features emanated from longitudinally-aligned inclusions rich in aluminum.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001523
EISBN: 978-1-62708-227-3
... the comers of the flame-cut cloverleaf lobe. This new manufacturing process solved the problem. Decks Ductile brittle transition Residual stress Transport ships ABS AH36 Mixed-mode fracture Metalworking-related failures Introduction The first of the TAKR 300 (Bob Hope) Class...
Abstract
In TAKR 300 (Bob Hope) Class transport ships, the builder observed cracking of steel cloverleaf vehicle tie-down deck sockets following installation. Sockets were made from AH36 steel plate by flame cutting and cold coining, then submerged-arc welded to the shop deck. Cracks initiated from the tip of the cloverleaf pattern in >300 cases aboard several cargo vessels in various stages of construction. Consultants who analyzed the situation concluded that the problem may have been corrosion and hydrogen embrittlement. Three possible mechanisms of failure were considered: overload failure; fatigue fracture; and, environmentally-assisted cracking. Testing indicated overload failure was the cause. Remedial actions were taken to improve the fracture properties of the deck socket. A modified manufacturing process was developed involving milling and cutting instead of coining to round the comers of the flame-cut cloverleaf lobe. This new manufacturing process solved the problem.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001479
EISBN: 978-1-62708-229-7
..., the material being drawn out to a feather edge at the time of rupture. Other ruptures in the same and other tubes were of a more brittle type, this being associated with penetration of material by molten copper derived from scale. Boiler tubes Copper Scale (corrosion) Steel tube Mixed-mode fracture...
Abstract
Several ruptures took place in the front wall tubes of a water tube boiler. Some rupture samples showed ductile failure while others showed brittle failure. Specimens taken from the rupture where a thick edge had been produced, i.e., with little evidence of prior plastic deformation, showed a coarse microstructure indicative of gross overheating. The examination indicated that failure in the main resulted from gross overheating arising from water starvation as could have been due to a number of causes. The ruptures in some tubes were of the type commonly found in overheated tubes, the material being drawn out to a feather edge at the time of rupture. Other ruptures in the same and other tubes were of a more brittle type, this being associated with penetration of material by molten copper derived from scale.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001140
EISBN: 978-1-62708-227-3
... employing the “leak-before-break” design philosophy, developed using fracture mechanics, to eliminate the possibility of catastrophic ruptures. Gas cylinders Sea water Al-5Mg Mixed-mode fracture Stress-corrosion cracking Introduction The employment of light cylinders made of aluminum...
Abstract
Several pressurized air containers (i.e., diving tanks) made of non-heat-treatable Al-5Mg aluminum alloy failed catastrophically. Catastrophic failure occurred when a subcritical stress corrosion crack reached a critical size. Critical crack size for unstable propagation was reached prior to wall penetration, which could have led to subsequent loss of pressure, resulting in explosion of the cylinder. It was recommended that more stress corrosion resistant alloys be used for sea diving applications. Furthermore, cylinders should have a reduced wall thickness that can be determined employing the “leak-before-break” design philosophy, developed using fracture mechanics, to eliminate the possibility of catastrophic ruptures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001252
EISBN: 978-1-62708-235-8
...) Forgings Ingots Precipitates Fe-0.39C-1.38Mn-0.325Mo Mixed-mode fracture An octagonal steel ingot weighing 13 tons made of manganese-molybdenum steel containing 0.39% C, 0.41% Si, 1.38% M n, 0.014% P, 0.009% S and 0.325% Mo, developed gaping cross-cracks on all eight sides in the forging press...
Abstract
An octagonal steel ingot weighing 13 tons made of manganese-molybdenum steel developed gaping cross-cracks on all eight sides in the forging press during initial pressure application. It was reported that the steel had been melted in a basic 12-ton arc furnace, oxygenated, furnished with 42 kg of 75% ferrosilicon and 12 kg aluminum additions, alloyed with 160 kg of 80% ferromanganese, and finally deoxidized in the ladle with 42 kg calcium silicon. For metallographic examination a plate approximately 100 mm thick was cut parallel to one of the eight planes. Platelet-like particles could be discerned on the conchoidal fracture planes with the SEM. The precipitates proved to be thin and partially transparent platelets of a hexagonal crystal lattice whose parameters resemble those of AIN. The precipitates were at least in part still undissolved in spite of the long holding period at high initial forging temperature. Another block melted under the same conditions and immediately after the defective one, was forged into a gear ring without any trouble. This ring was free of grain boundary precipitates, but it contained only 0.012 % AI and 0.0102 % N.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0089254
EISBN: 978-1-62708-225-9
... of low-alloy steel was suggested as recommendation. Design Locking devices Materials selection 1144 UNS G11440 Mixed-mode fracture ( Ref 1 ). A design deficiency involving improper materials selection was revealed through the analysis of a failed tapered-ring sprocket locking device...
Abstract
A failed tapered-ring sprocket locking device consisted of an assembly of four tapered rings that are retained by a series of cap screws. The middle wedge-shaped rings were pulled closer as the screws were tightened forcing the split inner ring to clamp tightly onto the shaft. One of the wedge-shaped middle rings fractured prior to having been fully torqued, preventing the sprocket from being locked to the shaft. “Woody” fracture features, as a result of decohesion between a high volume fractions of manganese sulfide stringers and the matrix, was revealed during examination. The material was revealed by chemical analysis to be resulfurized grade of carbon steel (SAE type 1144, UNS G11440) which has enhanced longitudinal tensile properties but low transverse properties. It was observed that when the fastening screws were torqued, a significant hoop stress was placed on the middle rings and it caused the failure at the large inclusion present at the minimum section thickness zone of the middle ring. It was concluded that since the material contained a high volume fraction of these inclusions, the material choice was not appropriate for this application. A nonresulfurized grade of low-alloy steel was suggested as recommendation.
1