Skip Nav Destination
Close Modal
Search Results for
Milling cutters
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-13 of 13 Search Results for
Milling cutters
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001155
EISBN: 978-1-62708-223-5
... and the surface roughness measured more precisely. Arbors Milling cutters 16MnCr5E Fatigue fracture Ductile fracture Introduction The milling machine arbors were inserted with satellite spindles having a maximum speed of 1500 rpm, and broke out between the groove and the flange ( Fig. 1...
Abstract
Milling machine arbors were inserted with satellite spindles having a maximum speed of 1500 rpm, and broke out between the groove and the flange. The appearance of the fracture surface was the same on both arbors. The pronounced scan lines characterized the fractures as fatigue fractures. The appearance of the fracture in the arbors indicated ductile fatigue fracture which had its origin in the radii between groove and flange. These radii of 0.15 and 0.2 mm were too small for the load on the milling machine. In addition there were grooves at the base of the radii which had an unfavorable effect on the life of the component by acting as notches with their resulting stress concentration. Considering the great hardness of the case, the small radii would have been critical even without grooves. Measures were taken so that the critical radius of the milling machine was increased and the surface roughness measured more precisely.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001384
EISBN: 978-1-62708-215-0
... with bolts manufactured using controlled processes. Machine tools Milling cutters 4340 UNS G43400 Hydrogen damage and embrittlement Background The draw-in bolt and the collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after a relatively long...
Abstract
The draw-in bolt and collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after a relatively long service life. The collet ejected at a high rotational speed due to loss of its vertical support and shattered one of its arms upon impact with the work table. SEM fractography and metallographic examinations conducted on the bolt revealed hairline indications along grain facets on the fracture surface and stepwise cracking in the material, both indicating failure by hydrogen embrittlement. Similar draw-in bolts were discarded and replaced with bolts manufactured using controlled processes.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... be further reduced by strategic placement of the cutting fluid nozzles ( Fig. 2 ) ( Ref 5 ). Access holes in the body of milling cutters and drill bits that provide thorough-the-tool coolant flow improve the impingement of cutting fluid into the cutting zone and reduce rejection and workpiece production...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... crusher wear, electronic circuit board drill wear, grinding plate wear failure analysis, impact wear of disk cutters, and identification of abrasive wear modes in martensitic steels. abrasive wear failures abrasive wear mechanisms adhesive wear erosive-type wear wear failure analysis...
Abstract
Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock crusher wear, electronic circuit board drill wear, grinding plate wear failure analysis, impact wear of disk cutters, and identification of abrasive wear modes in martensitic steels.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... units are particularly susceptible to gouging abrasion. This type of wear also occurs to the liners of large grinding mills, particularly large autogenous and semiautogenous mills, where large chunks of ore (up to 250 mm, or 10 in., in diameter) are to be broken up by the tumbling action. Gouging...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
..., and so on) and machining processes (drilling, turning, milling, and so on). Second, tools and dies are generally used at higher hardnesses than most other steel products; 58 to 68 HRC is a typical range. Dies for plastic molding or hot working are usually used at lower hardnesses, typically from 30 to 55...
Abstract
This article describes the characteristics of tools and dies and the causes of their failures. It discusses the failure mechanisms in tool and die materials that are important to nearly all manufacturing processes, but is primarily devoted to failures of tool steels used in cold-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps, unconsolidated interiors, and carbide segregation and poor carbide morphology are reviewed with illustrations.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006818
EISBN: 978-1-62708-329-4
... on) and machining processes (drilling, turning, milling, and so on). Second, tools and dies are generally used at higher hardnesses than most other steel products; 58 to 68 HRC is a typical range. Dies for plastic molding or hot working are usually used at lower hardnesses, typically from 30 to 55 HRC...
Abstract
This article discusses failure mechanisms in tool and die materials that are very important to nearly all manufacturing processes. It is primarily devoted to failures of tool steels used in cold working and hot working applications. The processes involved in the analysis of tool and die failures are also covered. In addition, the article focuses on a number of factors that are responsible for tool and die failures, including mechanical design, grade selection, steel quality, machining processes, heat treatment operation, and tool and die setup.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... ( Fig. 2 ). The drive motor is primarily responsible for turning the screw(s). Additional drive motors are responsible for rotation of melt pumps, pullers, winders, and cutters and are often supplied as a component part of the additional units. One commonality of the extruder drive motors, regardless...
Abstract
This article discusses technologies focused on processing plastic materials or producing direct tools used in plastics processing. The article focuses on extrusion and injection molding, covering applications, materials and their properties, equipment, processing details, part design guidelines, and special processes. It also covers the functions of the extruder, webline handling, mixing and compounding operations, and process troubleshooting. Thermoforming and mold design are covered. Various other technologies for polymer processing covered in this article are blow molding, rotational molding, compression molding, transfer molding, hand lay-up process, casting, and additive manufacturing.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... bonded to the periphery of the blade, or they can be consumable blades using alumina or SiC abrasives with a rubber-based bond. Blades for the precision saws are much thinner than the abrasive wheels used in an abrasive cutter, and the load applied during cutting is much less. Consequently, less heat...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... adjacent, apparently undamaged tubes so that the total extent of damage can be assessed. The effect of the method of sample removal should be considered when choosing the size and location of samples. Mechanical methods of sample removal, such as cutting with a tube cutter, sawing, or drilling...
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... with the sharp angles of cutouts. Avoid a sharp corner at the bottom of small openings, such as in drawing or piercing dies, because spalling or flaking is likely to result at these points. Keep hubs of gears, cutters, and so on as near the same thickness as possible, because dishing is likely to occur...
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9