Skip Nav Destination
Close Modal
Search Results for
Military applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 46 Search Results for
Military applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001910
EISBN: 978-1-62708-217-4
... not in the nitrided condition as was required. This resulted in lower wear and fatigue resistance. These components also had a silicon content nearly double of that specified. The high silicon content lowered the notch tensile strength and toughness of the components. Breech bolts Weapons Military...
Abstract
Breech bolt assemblies from the Gatling guns used on fighter aircraft failed during firing tests. Metallography of the failed components revealed considerable decarburization which resulted in a loss of surface hardness. It was also determined that the maraging steel components were not in the nitrided condition as was required. This resulted in lower wear and fatigue resistance. These components also had a silicon content nearly double of that specified. The high silicon content lowered the notch tensile strength and toughness of the components.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001295
EISBN: 978-1-62708-215-0
... conditions was the major cause of failure. Recommendations emphasized the need for a suitable shock absorber to be fitted at the constant-tensioning device of the winch system. Military applications Military planes Shock loading Fe-0.8C (Other, general, or unspecified) fracture Background...
Abstract
Over a period of 2 or 3 years, 40 to 50 premature failures of drawn high-tensile, pearlitic high-carbon (0.8 wt% C) steel wires used as cables for towing targets behind aircraft occurred. Six service failures were examined in detail. Four types of failure characteristics were noted. A close examination of wire that had been flown several times without failure was also made, and dynamic tests were conducted to investigate the fracture characteristics of wire subjected to dynamic loading. It was concluded that dynamic shock loading transmitted by the target during unsteady flight conditions was the major cause of failure. Recommendations emphasized the need for a suitable shock absorber to be fitted at the constant-tensioning device of the winch system.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001027
EISBN: 978-1-62708-214-3
... of a military helicopter failed during a hovering exercise. Applications The main rotor yoke of the Royal Australian Air Force (RAAF) Iroquois helicopter provides the attachment for the main rotor blades to the main rotor drive shaft. The pillow blocks, which are attached to the yoke by four bolts...
Abstract
The 4340 steel main rotor yoke of a helicopter failed during a hovering exercise. Visual examination of the yoke revealed no evidence of gross external damage. Visual fracture surface examination, macrofractography, scanning electron micrography, and metallography of a section cut from the yoke in the region of the cracking indicated that the failure was caused by fatigue-crack initiation and growth from severe corrosion damage to a pillow-block bolt hole. Corrosion occurred because of failure of the protection scheme. An upgraded corrosion protection scheme for the bolt holes was recommended, along with nondestructive inspection of the region at intervals determined by fractographic analysis of the fatigue crack growth.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001030
EISBN: 978-1-62708-214-3
...). Control of machining parameters to prevent formation of brittle martensite, use of galvanically compatible fasteners, and use of an alternate lubricant were recommended. Airframes, corrosion Fasteners Jet planes Marine environments Military planes Solid lubricants Ti-6Al-4V UNS R56406 Stress...
Abstract
Cracks were discovered between interference-fit fasteners (MoS2-coated Ti-6Al-4V) that had been incorporated into a fighter aircraft primary structural frame (D6ac steel) to enhance structural fatigue life. Examination of sections cut from the cracked frame established that the cracks propagated by stress-corrosion cracking. The cause of cracking was twofold: use of interference-fit fasteners exposed to moisture intrusion from a marine environment and poor hole quality. Failure was intensified by dissimilar-metal contact in the presence of weak acidic electrolyte (dissociated MoS2). Control of machining parameters to prevent formation of brittle martensite, use of galvanically compatible fasteners, and use of an alternate lubricant were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001292
EISBN: 978-1-62708-215-0
... Abstract A crack was detected in one arm of the right-hand horizontal brace of the nose landing gear shock strut from a large military aircraft. The shock strut was manufactured from a 7049 aluminum alloy forging in the shape of a delta. A laboratory investigation was conducted to determine...
Abstract
A crack was detected in one arm of the right-hand horizontal brace of the nose landing gear shock strut from a large military aircraft. The shock strut was manufactured from a 7049 aluminum alloy forging in the shape of a delta. A laboratory investigation was conducted to determine the cause of failure. It was concluded that the arm failed because of the presence of an initial defect that led to the initiation of fatigue cracking. The fatigue cracking grew in service until the part failed by overload. The initial defect was probably caused during manufacture. Fleet-wide inspection of the struts was recommended.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006817
EISBN: 978-1-62708-329-4
... on their way out and that on-condition maintenance was on the way in. Experience with the reliability programs was also beginning to develop criteria for identifying the appropriate approach for a given item when installed in a given application. The time was ripe to consolidate the lessons...
Abstract
Reliability-centered maintenance (RCM) is a systematic methodology for preventing failures. This article begins by discussing the history of RCM and uses Society of Automotive Engineers (SAE) all-industry standard JA1011 as its model to describe the key characteristics of an RCM process. It then expands on questions involved in RCM process, offering definitions when necessary. Next, the article describes the approach of RCM to failure modes and effects analysis (FMEA), the failure management policies available under RCM, and the criteria of RCM for deciding when a specific failure management policy is technically feasible. Then, after discussing the ways that RCM classifies failure effects in terms of consequences, it describes how RCM uses failure consequences to identify the best failure management policy for each failure mode. Next, the building blocks of RCM are put together to create a failure management program. The article ends with a discussion on some practical issues pertaining to RCM that lie outside the scope of SAE JA1011.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047010
EISBN: 978-1-62708-234-1
.... Bulging High temperature tests Materials selection Military applications Tubes H19 UNS T20819 Rene 41 UNS N07041 Udimet 630 Inconel 718 UNS N07718 4337V UNS G43370 (Other, miscellaneous, or unspecified) failure When bulging occurred in mortar tubes made of British I steel (see Table 1...
Abstract
When bulging occurred in mortar tubes made of British I steel during elevated-temperature test firing, a test program was formulated to evaluate the high-temperature properties (at 540 to 650 deg C, or 1000 to 1200 deg F) of the British I steel and of several alternative alloys including a maraging steel (18% Ni, grade 250), a vanadium-modified 4337 gun steel (4337V), H19 tool steel, and high-temperature alloys Rene 41, Inconel 718, and Udimet 630. All the alloys evaluated had been used in mortar tubes previously or were known to meet the estimated minimum yield strength. The alloys fall in this order of decreasing strengths: Udimet 630, Inconel 718, Rene 41, H19 tool steel, British I steel, 4337V gun steel, and maraging steel. When cycled between room temperature and 540 to 650 deg C (1000 to 1200 deg F), only Udimet 630, Inconel 718, and Rene 41 retained yield strengths higher than the minimum. Also, these three alloys maintained high strengths over the tested range, whereas the others decreased in yield strength as cycling progressed. Analysis showed Inconel 718 was considered best suited for 81-mm mortar tubes, and widespread industrial use ensured its availability.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003504
EISBN: 978-1-62708-180-1
... for identifying the appropriate approach for a given item when installed in a given application. The time was ripe to consolidate the lessons into a comprehensive process for identifying the best approach for handling the failures of items aboard commercial aircraft. The first public proposal for a decision...
Abstract
Reliability-centered maintenance (RCM) is a systematic methodology for preventing failures. This article discusses the history of RCM and describes the key characteristics of an RCM process, which involves asking seven questions. The first four questions comprise a form of failure modes and effects analysis (FMEA), and therefore, the article explains the approach of RCM to FMEA and the failure management policies available under RCM. It reviews the ways that RCM classifies failure effects in terms of consequences and details how RCM uses failure consequences to identify the best failure management policy for each failure mode. The article concludes with a discussion on some practical issues pertaining to RCM that lie outside the scope of SAE JA1011.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001706
EISBN: 978-1-62708-217-4
... , ( 1990 ) 6. Military Specification MIL-C-16173E , Corrosion Preventive Compounds-Solvent Cutback Cold Application, (1993) 7. Military Handbook 5F , Metallic Materials & Elements for Aerospace Vehicle structures, Vol.1 , pp 2 –31 to 2– 51 ( 1990 ) Selected References Selected...
Abstract
The truck beam of the left main landing gear (MGL) of a Boeing 707 airplane collapsed on the ground just after the aircraft was unloaded and refueled. The investigation revealed that failure was caused by the propagation of an intergranular crack originating from the bottom of the pit. The crack reached the critical size and caused failure by stress-corrosion cracking (SCC) under static loading conditions in service. The failed beam was protected by a well adhering paint system. However, the presence of adequate amounts of corrosion preventive compound films (CPC) on the surfaces of the failed beam could not be conclusively established because of the long term service exposure and presence of lubricants.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003515
EISBN: 978-1-62708-180-1
...-inspection defect distributions shown in Fig. 6 . As an example, consider the application of damage tolerance to military aircraft engines ( Ref 16 ), a part of the USAF Engine Structural Integrity Program (ENSIP). In this example, components are designed for crack growth so that the safety limit...
Abstract
This article provides information on life assessment strategies and conceptually illustrates the interplay of nondestructive evaluation (NDE) and fracture mechanics in the damage tolerant approach. It presents information on probability of detection (POD) and probability of false alarm (PFA). The article describes the damage tolerance approach to life management of cyclic-limited engine components and lists the commonly used nondestructive evaluation methods. It concludes with an illustration on the role of NDE, as quantified by POD, in fully probabilistic life management.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006868
EISBN: 978-1-62708-395-9
..., and for military applications. They can be fabricated under sterile conditions, allowing for sanitary handling and preservation of foods, and for specialized medical components to be used in the operating arena during life-saving procedures. The process of developing a part to be manufactured from plastics...
Abstract
This article presents the benefits of selecting plastics for products to be manufactured. It discusses the four key considerations for plastic part design: material, process, tooling, and design. The article provides a detailed discussion of the development sequence for plastic parts. The basis for the development sequence is twofold: first, to create the best solution for the application, and second, to minimize potential project risks through careful and thoughtful work habits.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001023
EISBN: 978-1-62708-214-3
.... The wear had been caused by incorrect machining of the shaft splines, which prevented the bevel gear nut from locating correctly against the gear. Aerospace engines Aircraft components Bevel gears Drives Engine components Jet planes Military planes Splines 16 NCD 13 Fretting wear...
Abstract
The failure of an ATAR engine accessory angle drive gear assembly caused an engine flame-out in a Mirage III aircraft of the Royal Australian Air Force (RAAF) during a landing. Stripping of the engine revealed that the bevel gear locating splines (16 NCD 13) had failed. Visual and low-power microscope examination of the spline of the shaft showed evidence of fretting wear debris; similar wear was observed on the splines of the mating bevel gear. It was concluded that the splines had failed by severe fretting wear. Fretting damage was also observed on the shaft face adjacent to the splines and on the bevel gear abutment shoulder. Additional tests included a metrological inspection of the shaft, bevel gear and support ring; metallographic examination of a section from the shaft; chemical analysis of the shaft material (16 NCD 13); and hardness testing of a sample of the yoke material. The wear had been caused by incorrect machining of the shaft splines, which prevented the bevel gear nut from locating correctly against the gear.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001024
EISBN: 978-1-62708-214-3
... of the main rotor blades was found about a mile from the crash site, indicating that it separated in the air. Applications Because this helicopter was designed for use by the U.S. military, its survivability under hostile fire was a design concern. The main rotor blade was designed to withstand hits...
Abstract
A Marine Corps helicopter crash was investigated. Efforts were directed to the failure of one of the main rotor blades that had apparently separated in the air. The apparent failure of a blade integrity monitor (BIM) system was also considered. The rotor blade comprised a long, hollow 6061-T651 aluminum alloy extrusion and 26 fiberglass “pockets” that provided the trailing-edge airfoil shape. Visual examination of the fracture surface of the aluminum extrusion indicated fatigue crack growth followed by ductile overload separation. Examination of the fatigue fracture region revealed several pits that appeared to have acted as fracture origin sites. Time to failure was determined using fracture mechanics. It was concluded that failure was caused by a fatigue crack that grew to critical length without detection. The crack originated at pits that resulted from the use of an improperly designed heating element used to cure fiberglass repairs.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001021
EISBN: 978-1-62708-214-3
... to be determined for the configuration of interest. Crack propagation Fatigue life Jet planes Military planes Wings (aircraft) AU4SG Fatigue fracture Background Following the crash of a Mirage III-0 aircraft, a small crack was detected in a bolt hole in the wing main spar. Because this area...
Abstract
Following the crash of a Mirage III-0 aircraft (apparently caused by engine failure), a small crack was detected in a bolt hole in the wing main spar (AU4SG aluminum alloy). Because this area was considered to be critical to aircraft safety and similar cracking was found in other spars in service, the Royal Australian Air Force requested that the crack growth rate during service be determined. The loading history of the aircraft was made available in the form of flight by-flight records of the counts from the vertical accelerometer sensors fitted to the airframe and a series of “overstress” events recorded during the life of the aircraft. The bolt hole was examined by eddy current testing, visual examination, high-powered light microscope, and scanning electron microscope. Simulation tests were also conducted. The use of simulation specimens permitted actual crack growth rate data to be determined for the configuration of interest.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006937
EISBN: 978-1-62708-395-9
... been developed and published by the American Society for Testing and Materials (ASTM). While virtually every optical characteristic can be tested in various ways, ASTM standards are used by the material manufacturers and are referred to throughout this article when applicable. Transmission and Haze...
Abstract
Optical testing of plastics includes the characterization of materials and the analysis of optical components. If a material is tested for transmission, haze, yellowness, and refractive index, the knowledge of its optical properties is nearly complete. For optical components, surface irregularity, birefringence, and internal contamination must also be considered. These characteristics are a function of the material and the fabrication method. Gloss and color also are affected by the base material and measured as optical properties.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001757
EISBN: 978-1-62708-241-9
..., which can greatly increase strain on the part at the damaged section. As a result from the abnormal back-and-forth bending, material microstructure may be altered around the applicable damaged area. This alteration is often termed work hardening [ 7 ]. Fig. 10 The result of hardness test...
Abstract
Rotor blades in the compressor section of a J79 engine had failed. Optical, stereoscopic, microhardness testing, and SEM examinations were conducted to determine the cause. The blades were made of STS403 and were used uncoated. They were damaged over an extensive area, from the 15th through the 17th compressor stages, as were stator vanes and casing sections. The fractured surface of the 17th blade showed multiple origins along with secondary cracking and extensive propagation that preceded separation. The metallographic analysis of the microstructure suggested work hardening. Based on the results, the cause of the fractured blade was high-amplitude fatigue due to severe stall. After normal engine usage of five months, the blade fractured sending fragments throughout the combustion and turbine sections.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
... cost of a fastener failure. Adequate testing is the most practical method of guarding against failure of a new fastener system for a critical application. The designer must not extrapolate existing data to a different size of the same fastener, because larger-diameter fasteners have significantly lower...
Abstract
This article first provides an overview of the types of mechanical fasteners. This is followed by sections providing information on fastener quality and counterfeit fasteners, as well as fastener loads. Then, the article discusses common causes of fastener failures, namely environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally, it provides information on the mechanism of fastener failures in composites.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001291
EISBN: 978-1-62708-215-0
... for fatigue crack growth during service. It was recommended that the damaged undercarriage struts be withdrawn from service pending further analysis and development of a repair technique. Crack propagation Military planes 35NCD16 Surface treatment related failures Intergranular fracture Fatigue...
Abstract
Examination of several fighter aircraft main landing gear legs revealed unusual cracking in the hard chromium plating that covered the sliding section of the inner strut. The cracking was associated with cracks in the 35 NCD 16 steel beneath the plating. A detailed investigation revealed that the cracking was caused by the combination of incorrect grinding procedure, the presence of hydrogen, and fatigue. The grinding damage generated tensile stresses in the steel, which caused intergranular cracking during the plating cycle. The intergranular cracks were initiation sites for fatigue crack growth during service. It was recommended that the damaged undercarriage struts be withdrawn from service pending further analysis and development of a repair technique.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001081
EISBN: 978-1-62708-214-3
... Abstract Several compressor disks in military fighter and trainer aircraft gas turbine engines cracked prematurely in the bolt hole regions. The disks were made of precipitation-hardened AM355 martensitic stainless steel. Experimental and analytical work was performed on specimens from...
Abstract
Several compressor disks in military fighter and trainer aircraft gas turbine engines cracked prematurely in the bolt hole regions. The disks were made of precipitation-hardened AM355 martensitic stainless steel. Experimental and analytical work was performed on specimens from the fifth-stage compressor disk (judged to be the most crack-prone disk in the compressor) to determine the cause of the failures. Failure was attributed to high-strain low-cycle fatigue during service. It was also determined that the cyclic engine usage assumed in the original life calculations had been under estimated, which led to low-cycle fatigue cracking earlier than expected. Fracture mechanics analysis of the disks was carried out to assess their damage tolerance and to predict safe inspection intervals.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003503
EISBN: 978-1-62708-180-1
... in terms of their consequences. During the 1970s and '80s, various military and professional society standards were written to define the analysis methodology ( Ref 5 , 6 , 7 , 8 ). MIL-STD 1629 (ships), “Procedures For Performing a Failure Mode Effects and Criticality Analysis” ( Ref 9 ) was published...
Abstract
This article describes the methodology for performing a failure modes and effects analysis (FMEA). It explains the methodology with the help of a hot water heater and provides a discussion on the role of FMEA in the design process. The article presents the analysis procedures and shows how proper planning, along with functional, interface, and detailed fault analyses, makes FMEA a process that facilitates the design throughout the product development cycle. It also discusses the use of fault equivalence to reduce the amount of labor required by the analysis. The article shows how fault trees are used to unify the analysis of failure modes caused by design errors, manufacturing and maintenance processes, materials, and so on, and to assess the probability of failure mode occurrence. It concludes with information on some of the approaches to automating the FMEA.
1