Skip Nav Destination
Close Modal
By
Cassio Barbosa, Simone Kessler de Barros, Ibrahim de Cerqueira Abud, Joneo Lopes do Nascimento, Sheyla Santana de Carvalho
Search Results for
Microstructural analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 397 Search Results for
Microstructural analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001616
EISBN: 978-1-62708-229-7
... Stage 2 (where corrosion was low) and Stage 3 (severe corrosion) were taken and subjected to visual inspection, SEM, x-ray diffraction, microhardness measurement, and chemical and microstructural analysis. It was determined that extended non-operation of the plant resulted in the settlement of corrosive...
Abstract
Severe pitting corrosion of a carbon steel tube was observed in the air preheater of a power plant, which runs on rice straw firing. Approximately 1450 tubes were removed from Stage 3 of the preheater (air inlet and flue gas outlet) due to corrosion and local bursting. Samples from Stage 2 (where corrosion was low) and Stage 3 (severe corrosion) were taken and subjected to visual inspection, SEM, x-ray diffraction, microhardness measurement, and chemical and microstructural analysis. It was determined that extended non-operation of the plant resulted in the settlement of corrosive species on the tubes in Stage 3. The complete failure of the tube occurred due to diffusion of these elements into the base metal and precipitation of potassium and chlorine compounds along the grain boundaries, with subsequent dislodging of grains. The nonmetallic inclusions acted as nucleating sites for local pitting bursting. Nonuniform heat transfer in Stage 3 operation accelerated the selective corrosion of front-end tubes. The relatively high heat transfer in this stage resulted in condensation of some corrosive gases and consequent corrosion. Continuous operation of the plant with some precautions during assembly of the tubes reduced the corrosion problem.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001687
EISBN: 978-1-62708-220-4
... outer regions, accelerating the formation and coalescence of microcracks; leading to the premature failure of the tube. This case history was adapted from: Caceres P.G. , Habib K. , Failure Analysis of a Steam Reformer Tube , Microstructural Science , Vol 23 , Advances and...
Abstract
Microstructural examinations on transverse cross sections of a steam reformer tube, showed the presence of large macrovoids elongated in the radial direction and emanating from the internal surface of the tube. The macrovoids were located at the interdendritic regions, and were partially filled by a Mn-Fe bearing chromium oxide film. The areas adjacent to the oxide film were chemically depleted in C, Cr and Mn and rich in Fe and Ni. Associated with this depletion were a large concentration of microvoids. It was suggested that the dissolution of carbides in areas surrounding the macrovoids and the concentration of stresses at their tips, caused extensive localized plastic deformation which led to the formation of microvoids and subsequently to the spalling of the oxide film. The non-protective character of the film induced a progressive deterioration of the grain boundaries properties. Grain boundary sliding and dislocation motion were enhanced, causing a local increase in the steady state strain rate and the premature failure of the tube.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001666
EISBN: 978-1-62708-229-7
... taken after light etching was intended to remove some of the corrosion product from within the crack for EDX analysis in the scanning electron microscope. Heavier etching was necessary to reveal the microstructure. Both sets of replicas were coated with vacuum-deposited carbon, and in the case of the...
Abstract
Stress-corrosion cracking of low-alloy steel turbine discs has emerged as a generic concern in nuclear generating stations. An investigation that made extensive use of field metallographic techniques to examine suspected cracking in such a component is described. The crack position, and its relationship to surface topographic features, were examined and recorded by magnetic rubber and high-resolution dental rubber replicating materials. Corrosion deposits on keyway surfaces and within the crack were collected with acetate foil replicas applied and then stripped from the keyway surfaces. Microstructural details were revealed by the use of field metallographic preparation techniques and replicated by acetate foil for examination with optical and scanning electron microscopes. It was possible by these techniques to establish the cracking mechanism as stress corrosion possibly related to chloride or sulphate ion steam contaminants. Subsequent sectioning and conventional metallography confirmed both the validity of the conclusions and the replication techniques.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001228
EISBN: 978-1-62708-229-7
... surface of the crack which has been forced open. 2× Fig. 4 Fracture-surface at fractured end of blade stump. 2× Analysis confirmed that the blades consisted of a steel containing 0.2% C and 13% Cr as is customarily employed for such blades. For the microstructure examination...
Abstract
In an electric power station, seven turbine blades out of 112 broke or cracked within 8 to 14 months after commencement of operation. The blades in question were all located on the last running wheel in the low pressure section of a 35,000 kW high pressure condensing turbine. They were milled blades without binding wires and cover band. They did not fracture at the fastening, i.e. the location of highest bending stress, but in a central region which was 165 to 225 mm away from the gripped end. The blades were fabricated from a stainless heat-treatable chromium steel containing 0.2C and 13.9Cr. Microstructural examination showed the blades were destroyed by flexural vibrations which evidently reached their maximum amplitude at the location of fracture. Erosion of the inlet edge, possibly in connection with vibration-induced corrosion cracking, contributed to fracture.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048795
EISBN: 978-1-62708-220-4
... formation of hard spots. The mode of crack propagation was established by microstructural examination to be transgranular cleavage. It was concluded that failure of the pressure vessel stemmed from the formation of transverse fabrication cracks in the HAZ fostered by the presence of hard spots. It was...
Abstract
A large pressure vessel designed for use in an ammonia plant failed during hydrostatic testing. It was fabricated from ten Mn-Cr-Ni-Mo-V steel plates which were rolled and welded to form ten cylindrical shell sections and three forgings of similar composition. The fracture surfaces were metallographically examined to be typical for brittle steel fracture and associated with the circumferential weld that joined the flange forging to the first shell section. Featureless facets in the HAZ were observed and were revealed to be the fracture-initiation sites. Pronounced banding in the structure of the flange forging was revealed by examination. A greater susceptibility to cracking was interpreted from the higher hardenability found within the bands. Stress relief was concluded to have not been performed at the specified temperature level (by hardness and impact tests) which caused the formation of hard spots. The mode of crack propagation was established by microstructural examination to be transgranular cleavage. It was concluded that failure of the pressure vessel stemmed from the formation of transverse fabrication cracks in the HAZ fostered by the presence of hard spots. It was recommended that normalizing and tempering temperatures be modified and a revised forging practice explored.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048777
EISBN: 978-1-62708-229-7
..., indicative of pre-existing cracks, were revealed by examination of the fracture surface at the drain grooves arc gouged at the nozzle sites. A thin layer of material with a dendritic structure was observed at the groove surface. The dendritic layer was revealed by qualitative microprobe analysis to contain...
Abstract
A 150 cm ID boiler drum made form ASTM A515, grade 70, steel failed during final hydrotesting at a pressure of approximately 26 MPa. Brittle fractures were revealed in between two SA-106C nozzles and remainder was found to involve tearing. Short, flat segments of fracture area, indicative of pre-existing cracks, were revealed by examination of the fracture surface at the drain grooves arc gouged at the nozzle sites. A thin layer of material with a dendritic structure was observed at the groove surface. The dendritic layer was revealed by qualitative microprobe analysis to contain over 1% C, higher than the carbon content of the base metal. The cracks in the drain groove surface could have occurred after arc gouging, during subsequent stress-relieving, or during the hydrostatic test. Flame cutting is not recommended for the type of steel used in the boiler drum because it can lead to local embrittlement and stress raisers, potentially initiating major failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048708
EISBN: 978-1-62708-229-7
... exhibited no effects of corrosion, areas that were pitted, and areas containing nodules. The tubing contained several nodules and pits, but all were isolated from each other. A cross section through an unaffected area of the tube showed no corrosion on the inner surface and an undamaged microstructure. Most...
Abstract
The horizontal heat-exchanger tubes made of copper alloy C70600, in one of two hydraulic-oil coolers in an electric power plant, leaked after 18 months of service. River water was used as the coolant in the heat-exchanger tubes. Several nodules on the inner surface and holes through the tube wall, which appeared to have formed by pitting under the nodules, were revealed by visual examination. Steep sidewalls, which indicated a high rate of attack, were revealed by microscopic examination of a section through the pit which had penetrated the tube wall. The major constituent of reddish deposit on the inner surfaces of the tubes was revealed to be iron oxide and slight manganese dioxide. Effluent from steel mills upstream was indicated by the presence of these and other constituents to be the source of most of the solids found in the tubes. It was concluded that the tubing failed by crevice corrosion. The tubing in the cooler was replaced, and cooling-water supply was changed from river to city water, which contained no dirt to deposit on the tube surfaces. An alternate solution of installing replacement tubes in the vertical position to make deposition of solids from river water less likely was suggested.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001412
EISBN: 978-1-62708-229-7
... examination of the blade material showed this to be a ferritic stainless steel of the type commonly used for turbine blades, the microstructure being illustrated in Fig. 5 . A number of non-metallic inclusions were present which had been drawn into threads in rolling; these appeared to consist largely of...
Abstract
Three blades from 45,000 kW, 3,000 rpm turbine were received for examination, comprising the root of blade 28, blade 89 showing a crack in one of the root teeth, and blade 106 which was free from defects. Microscopic examination of the blade material showed it to be a ferritic stainless steel of the type commonly used for turbine blades. A number of non-metallic inclusions were present which had been drawn into threads in rolling; these appeared to consist largely of duplex silicates. The failure of blade 28 was the result of the development of a creeping crack. Magnetic crack examination of blade 89 revealed a crack in a tooth in an identical position to the start of the crack in blade 28 but on the opposite, i.e., steam inlet, side of the blade. Similar examination of blade 106 did not reveal any cracks. Cracking was associated with unsatisfactory bedding of the blade teeth on the faces of the wheel grooves. It was concluded that the blade failures were due primarily to over-loading of the individual blade teeth due to incorrect fitting in the wheel. Vibration was an important contributory factor, as it resulted in the imposition of fluctuating stresses on the overloaded teeth. Non-metallic inclusions in the blade material playing a minor part.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001800
EISBN: 978-1-62708-241-9
... metallographic sections of the wires revealed highly deformed ferrite and pearlite, the normal and expected microstructure for cold-drawn wire ( Fig. 4 ). However, the longitudinal sections through the fatigue cracks exhibited a white-etching microstructural phase at the origins ( Fig. 5 ). Fig. 4...
Abstract
An electric transport vehicle, similar to an electric trolley or subway rail car, experienced frequent breakdowns due to in-service fractures of torsion springs that support the weight of an overhead electric pickup assembly. Scanning electron microscopy and metallographic examinations determined that the fractures stemmed from electric arc damage. Intergranular quench cracks in the transformed untempered martensite on the surface of the spring provided crack initiations that propagated during operation causing fatigue fracture.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001791
EISBN: 978-1-62708-241-9
... Abstract A pipe in the lateral wall of a boiler powering an aircraft carrier flat-top boat failed during a test at sea. The pipe was made from ASTM 192 steel, an adequate material for the application. Microstructural analysis along with equipment operating records provided valuable insight into...
Abstract
A pipe in the lateral wall of a boiler powering an aircraft carrier flat-top boat failed during a test at sea. The pipe was made from ASTM 192 steel, an adequate material for the application. Microstructural analysis along with equipment operating records provided valuable insight into what caused the pipe to rupture. Although the pipe had been replaced just 50 h before the accident, the analysis revealed incrustations and corrosion pits on the inner walls and oxidation on the outer walls. Microstructural changes were also observed, indicating that the steel was exposed to high temperatures. The combined effect of pitting, incrustations, and phase transformations caused the pipe to rupture.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
... Abstract A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001845
EISBN: 978-1-62708-241-9
... investigation that included fractographic and microstructural analysis, hardness testing, inductively coupled plasma spectroscopy, and finite-element analysis. The fracture was shown to be brittle in nature and covered with oxide flakes, but no other flaws relevant to the failure were observed. The...
Abstract
Two clamps that support overhead power lines in an electrified rail system fractured within six months of being installed. The clamps are made of CuNiSi alloy, a type of precipitation-strengthening nickel-silicon bronze. To identify the root cause of failure, the rail operator led an investigation that included fractographic and microstructural analysis, hardness testing, inductively coupled plasma spectroscopy, and finite-element analysis. The fracture was shown to be brittle in nature and covered with oxide flakes, but no other flaws relevant to the failure were observed. The investigation results suggest that the root cause of failure was a forging lap that occurred during manufacturing. Precracks induced by the forging defect and the influence of preload stress (due to bolt torque) caused the premature failure.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001043
EISBN: 978-1-62708-214-3
..., whereas the opposite side exhibited a planar-type fracture. Sections were removed from the eroded area and from the opposite lip for microscopic studies and chemical analysis. The eroded edges exhibited river bed ditching, indicative of thermal fatigue. Microstructural analysis showed massive carbide...
Abstract
A 76 mm (3 in.) type 304 stainless steel tube that was used as a heat shield and water nozzle support in a hydrogen gas plant quench pot failed in a brittle manner. Visual examination of a sample from the failed tube showed that one lip of the section was eroded from service failure, whereas the opposite side exhibited a planar-type fracture. Sections were removed from the eroded area and from the opposite lip for microscopic studies and chemical analysis. The eroded edges exhibited river bed ditching, indicative of thermal fatigue. Microstructural analysis showed massive carbide formations in a martensite matrix and outlining of prior-austenite grains by a network of fine, white lines. These features indicated that the material had been transformed by carburization by the impinging gas. The outer surface exhibited a heavy scale deposit and numerous cracks that originated at the surface of the tube. The cracks were covered with scale, indicating that thermal fatigue (heat cracking) had occurred. Chemical analysis confirmed that the original material was type 304 stainless steel that had been through-carburized by the formation of an endothermic gas mixture. It was recommended that plant startup and shutdown procedures be modified to reduce or eliminate the presence of the carburizing gas mixture.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001122
EISBN: 978-1-62708-214-3
... Abstract A sledge hammer chipped during use. The chip struck a by stander in the eye, leading to its loss. The hammerhead surface was examined visually, nondestructively (magnetic particle method), and stereo microscopically, and a microstructural analysis of a cross section of the head was...
Abstract
A sledge hammer chipped during use. The chip struck a by stander in the eye, leading to its loss. The hammerhead surface was examined visually, nondestructively (magnetic particle method), and stereo microscopically, and a microstructural analysis of a cross section of the head was conducted using optical microscope. Chemical composition of the hammerhead was determined by emission spectrometry. The chemical compositions of the chip and hammer head were compared using energy-dispersive analysis. Microhardness versus distance from the striking face was also determined. The hammerhead material was UNS G10800 (AISI/SAE grade 1080). Excessive hardnesses were measured in the first 3 mm (0. 12 in.) below the striking surface, indicating that there was lack of control during the final tempering operation.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001106
EISBN: 978-1-62708-214-3
... Abstract Three radiant heating element tubes from an aluminum holding furnace failed after a few months of service. One side of each of the tubes had disintegrated, leaving large holes and thinned cross sections. Microstructural analysis showed that the surface of the tube had been oxidized...
Abstract
Three radiant heating element tubes from an aluminum holding furnace failed after a few months of service. One side of each of the tubes had disintegrated, leaving large holes and thinned cross sections. Microstructural analysis showed that the surface of the tube had been oxidized along the grain boundaries and had extensive precipitation inside the grains. Chemical analysis indicated that the steel used for the tubes was AISI type 316 stainless steel Specifications for the tubes had called for AISI type 310S to be used. It was recommended that other tubes made from the same batch of steel sheet be checked.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001129
EISBN: 978-1-62708-214-3
... Abstract The failure of a 45 Mg (50 ton) rail crane bolster was investigated. Spectrochemical analysis indicated that the material was a 0.25C-1.24Mn-0.62Cr-0.24Mo cast steel. SEM examination revealed the presence of fatigue, as well as intergranular and ductile fractures. Microstructural...
Abstract
The failure of a 45 Mg (50 ton) rail crane bolster was investigated. Spectrochemical analysis indicated that the material was a 0.25C-1.24Mn-0.62Cr-0.24Mo cast steel. SEM examination revealed the presence of fatigue, as well as intergranular and ductile fractures. Microstructural analysis focused on an area where an antisway device had been welded to the structure and revealed the presence of coarse, untempered martensite that had resulted from faulty weld repair techniques. It was suggested that the use of proper welding procedures, including preheating and postheating, would have prevented the failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001842
EISBN: 978-1-62708-241-9
... Abstract A felt guide roll fractured in-service on a paper manufacturing machine, damaging the belt as well as multiple dryer rolls, nearby felt guide rolls, and the frame of the machine. The investigation included visual and stereoscopic examination, chemical and microstructural analysis...
Abstract
A felt guide roll fractured in-service on a paper manufacturing machine, damaging the belt as well as multiple dryer rolls, nearby felt guide rolls, and the frame of the machine. The investigation included visual and stereoscopic examination, chemical and microstructural analysis, microhardness and tensile testing, stress calculations, and vibration measurements. Based on the results, the roll fracture was attributed to high-cycle fatigue associated with a plug weld over one of the five threaded fasteners added to secure a balance weight inside the roll. The balance weight was installed to compensate for variations in wall thickness (i.e., weight distribution) of the pipe product used to make the roll. According to the investigation, resonance and vibration, which were initially considered, did not cause the failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001844
EISBN: 978-1-62708-241-9
... surfaces, protected by an anti-carburizing coating, stay unchanged. Based on extensive testing, including metallographic examination, microstructural analysis, microhardness testing, and spectroscopy, the oil hole was not protected as required, evidenced by the presence of a case layer. This oversight...
Abstract
A cylindrical spiral gear, part of a locomotive axle assembly, cracked ten days after it had been press-fit onto a shaft, after which it sat in place as other repairs were made. Workers at the locomotive shop reported hearing a sound, and upon inspecting the gear, found a crack extending radially from the bore to the surface of one of the tooth flanks. The crack runs the entire width of the bore, passing through an oil hole in the hub, across the spoke plate and out to the tip of one of the teeth. Design requirements call for the gear teeth to be carburized, while the remaining surfaces, protected by an anti-carburizing coating, stay unchanged. Based on extensive testing, including metallographic examination, microstructural analysis, microhardness testing, and spectroscopy, the oil hole was not protected as required, evidenced by the presence of a case layer. This oversight combined with the observation of intergranular fracture surfaces and the presence of secondary microcracks in the case layer point to hydrogen embrittlement as the primary cause of failure. It is likely that hydrogen absorption occurred during the gas carburizing process.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001076
EISBN: 978-1-62708-214-3
... eye. Macrophotography showed that the attack was more severe at one edge of each pad, resulting in deeper grooving and a buildup of deposits, mostly silver sulfides. Microstructural analysis of a cross section indicated that the interface between the silver overlay and the substrate (beryllium copper...
Abstract
The silver layer on a thrust bearing face experienced electrostatic discharge attack (the bombardment of an in-line series of individual sparks onto the soft bearing face), which destroyed the integrity of the bearing surface. The electrical attack appeared as scratches to the naked eye. Macrophotography showed that the attack was more severe at one edge of each pad, resulting in deeper grooving and a buildup of deposits, mostly silver sulfides. Microstructural analysis of a cross section indicated that the interface between the silver overlay and the substrate (beryllium copper) was sound and free of voids and foreign material. Corrosion products contained a large quantity of sulfur. The probable cause of the attack was the presence of electrical current within the system, with sulfides a possible contributing factor. Elimination of residual magnetism and grounding of the rotating system at appropriate locations were recommended.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... Abstract Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.