Skip Nav Destination
Close Modal
By
Tito Luiz da Silveira, Francisco Solano Moreira, Miriam Conçeicão Garcia Chavez, Iain Le May
Search Results for
Metallographic analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 339 Search Results for
Metallographic analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... Abstract Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001849
EISBN: 978-1-62708-241-9
... Abstract Spalled fragments from the work rolls of a steel bar straightening machine were received for failure analysis. Visual inspection coupled with optical and scanning electron microscopy were used as the principal analytical techniques for the investigation. Fractographic analysis revealed...
Abstract
Spalled fragments from the work rolls of a steel bar straightening machine were received for failure analysis. Visual inspection coupled with optical and scanning electron microscopy were used as the principal analytical techniques for the investigation. Fractographic analysis revealed the presence of a characteristic fatigue crack propagation pattern (beach marks) and radial chevron marks indicating the occurrence of final overload through a brittle intergranular fracture. The collected evidence suggests that surface-initiated cracks propagated by fatigue led to spalling, resulting in severe work roll damage as well as machine downtime and increased maintenance costs.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001777
EISBN: 978-1-62708-241-9
... Abstract The structural collapse of an iron-ore bucket-wheel stacker reclaimer at the beginning of operation was investigated by means of mechanical tests, microstructural characterization, and computational structural analysis. The mechanical failure was a consequence of a brittle fracture by...
Abstract
The structural collapse of an iron-ore bucket-wheel stacker reclaimer at the beginning of operation was investigated by means of mechanical tests, microstructural characterization, and computational structural analysis. The mechanical failure was a consequence of a brittle fracture by cleavage. The crack followed the heat-affected zone of a welded joint connecting a rectangular hollow section member and a plate flange. The main factors contributing to failure were related with a combination of design-in and manufacturing-in factors like high load-strength ratio at the point of failure, local stress concentration as a result of geometry restrictions, and weld defects. This particular section was responsible for the load transfer between the front tie member and the boom extremity, and its failure was the main cause of the catastrophic failure of the equipment.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001675
EISBN: 978-1-62708-220-4
... equipment. In the present case, the riser was welded at the top and is not free to move together with the manifold, whose position is dictated by the deformation of the forty-four riser tubes to which it is welded; the thermal stresses thus occur naturally in the system. From the metallographic analysis...
Abstract
The failure of a reformer tube furnace manifold has been examined using metallography. It has been shown that the cause of failure was thermal fatigue; the damage was characterized by the presence of voids produced by creep mechanisms operating during the high temperature cycle under high local stress. The study indicates that standard metallographic procedures can be used to identify failure modes in high temperature petrochemical plants.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001133
EISBN: 978-1-62708-214-3
... Abstract A femoral knee implant was returned to the casting vendor for analysis after exhibiting poor bond strength between the cast substrate and a sintered porous coating. Both the coating and the substrate were manufactured from a cobalt-chromium-molybdenum alloy. Metallographic analysis...
Abstract
A femoral knee implant was returned to the casting vendor for analysis after exhibiting poor bond strength between the cast substrate and a sintered porous coating. Both the coating and the substrate were manufactured from a cobalt-chromium-molybdenum alloy. Metallographic analysis indicated that a decarburized layer existed on all surfaces of the casting, which prevented bonding during the sintering thermal cycle. Bead-to-bead bonding within the coating appeared sufficient, and no decarburized layer was present on the bead surfaces. It was concluded that the decarburization did not occur during the sintering thermal cycle. It was recommended that the prosthetic manufacturer investigate atmosphere controls for all thermal cycles prior to coating.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047181
EISBN: 978-1-62708-233-4
... inspection, 50x/90x/400x SEM micrographs, and metallographic analysis) supports the conclusion that the cracking problem in these components was identified as quench cracks due to their brittle, intergranular nature and the characteristic temper oxide on the fracture surfaces. Although the steel met the...
Abstract
Hydraulic cylinder housings were being fabricated from 4140 grade seamless steel tubing. During production, magnetic-particle inspection indicated the presence of circumferential and longitudinal cracks in a large number of cylinders. Analysis (visual inspection, dye penetrant inspection, 50x/90x/400x SEM micrographs, and metallographic analysis) supports the conclusion that the cracking problem in these components was identified as quench cracks due to their brittle, intergranular nature and the characteristic temper oxide on the fracture surfaces. Although the steel met the compositional requirements of SAE 4140, the sulfur level was 0.022% and would account for the formation of the sulfide stringers observed. Apparently, the combination of the clustered, stringer-type inclusions and the quenching conditions were too severe for this component geometry. The result was a high incidence of quench cracks that rendered the parts useless. Recommendations included changing the specification, requiring the steel to have lower sulfur concentrations. Magnetic-particle cleanliness standards should be imposed that will exclude material with harmful clusters of sulfide stringers, for example, modified AMS 2301.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001757
EISBN: 978-1-62708-241-9
... through the 17th compressor stages, as were stator vanes and casing sections. The fractured surface of the 17th blade showed multiple origins along with secondary cracking and extensive propagation that preceded separation. The metallographic analysis of the microstructure suggested work hardening. Based...
Abstract
Rotor blades in the compressor section of a J79 engine had failed. Optical, stereoscopic, microhardness testing, and SEM examinations were conducted to determine the cause. The blades were made of STS403 and were used uncoated. They were damaged over an extensive area, from the 15th through the 17th compressor stages, as were stator vanes and casing sections. The fractured surface of the 17th blade showed multiple origins along with secondary cracking and extensive propagation that preceded separation. The metallographic analysis of the microstructure suggested work hardening. Based on the results, the cause of the fractured blade was high-amplitude fatigue due to severe stall. After normal engine usage of five months, the blade fractured sending fragments throughout the combustion and turbine sections.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001768
EISBN: 978-1-62708-241-9
... Abstract A steel splice plate in a power transmission line tower cracked while in service. Metallographic analysis indicated the presence of a white hard martensite layer near the crack, which occurred in the heel of the plate. Mechanical property tests revealed localized hardening in the area...
Abstract
A steel splice plate in a power transmission line tower cracked while in service. Metallographic analysis indicated the presence of a white hard martensite layer near the crack, which occurred in the heel of the plate. Mechanical property tests revealed localized hardening in the area of the crack, supporting the metallurgical findings. A substantial deterioration of the Charpy impact toughness of the material in the heel region was also observed which is believed to have caused the initiation and propagation of the cracks leading to the failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001808
EISBN: 978-1-62708-241-9
... copper alloys, in contact with a variety of liquids, chemistries, and substances. Analytical techniques employed include stereoscopic examination, energy dispersive x-ray spectroscopy (EDS), temperature and pH testing, and metallographic analysis. The findings indicate that MIC is frequently the result...
Abstract
Six cases of failure attributed to microbiologically influenced corrosion (MIC) were analyzed to determine if any of the failures could have been avoided or at least predicted. The failures represent a diversity of applications involving typical materials, primarily stainless steel and copper alloys, in contact with a variety of liquids, chemistries, and substances. Analytical techniques employed include stereoscopic examination, energy dispersive x-ray spectroscopy (EDS), temperature and pH testing, and metallographic analysis. The findings indicate that MIC is frequently the result of poor operations or improper materials selection, and thus often preventable.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001825
EISBN: 978-1-62708-241-9
... Abstract A type 304 stainless steel tube that failed in a boiler stack economizer was analyzed to determine the cause. The investigation consisted of visual, SEM/EDS, and metallographic analysis. Several degradation mechanisms appeared to be at work, including pitting corrosion, chloride stress...
Abstract
A type 304 stainless steel tube that failed in a boiler stack economizer was analyzed to determine the cause. The investigation consisted of visual, SEM/EDS, and metallographic analysis. Several degradation mechanisms appeared to be at work, including pitting corrosion, chloride stress corrosion cracking, and fatigue fracture. Investigators concluded that the primary failure mechanism was fatigue fracture, although either of the other mechanisms may have eventually caused the tube to fail in the absence of fatigue.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001022
EISBN: 978-1-62708-214-3
... adjoining wall between the steel sleeve and the steel diaphragm washer. Metallographic analysis and accelerated corrosion tests showed that the cracks had originated as stress-corrosion failures. Forgings, corrosion Landing gear, corrosion 2014 UNS A92014 Intergranular corrosion Stress-corrosion...
Abstract
Two complete aircraft undercarriage-leg 2014 aluminum alloy forgings and a number of sectional ends that exhibited cracks during nondestructive testing were examined to determine the extent of damage and the type of cracking. Cracks were primarily confined to the diaphragm and adjoining wall between the steel sleeve and the steel diaphragm washer. Metallographic analysis and accelerated corrosion tests showed that the cracks had originated as stress-corrosion failures.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001060
EISBN: 978-1-62708-214-3
... and 200 mm (10 and 8 in.) diam flanges welded to a tapered pipe section. The tapered pipe section was 3.3 mm (0.13 in.) thick type 316 stainless steel sheet, and the flanges were 5 mm (0.2 in.) thick CF8M (type 316) stainless steel castings. Visual and metallographic analysis indicated that the...
Abstract
A type 316 stainless steel pipe reducer section failed in service of bleached pulp stock transfer within 2 years in a pulp and paper mill. The reducer section fractured in the heat-affected zone of the flange-to-pipe weld on the flange side. The pipe reducer section consisted of 250 and 200 mm (10 and 8 in.) diam flanges welded to a tapered pipe section. The tapered pipe section was 3.3 mm (0.13 in.) thick type 316 stainless steel sheet, and the flanges were 5 mm (0.2 in.) thick CF8M (type 316) stainless steel castings. Visual and metallographic analysis indicated that the fracture was caused by intergranular corrosion/stress-corrosion cracks that initiated from the external surface of the pipe reducer section. Contributory factors were the sensitized condition of the flange and the concentration of corrosive elements from the bleach stock plant environment on the external surface. In the absence of the sensitized condition of the flange, the service of the pipe reducer section was acceptable. A type 316L stainless steel reducer section was recommended to replace the 316 component because of its superior resistance to sensitization.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001103
EISBN: 978-1-62708-214-3
... Abstract An aluminum bronze propeller tap bolt from a twin-screw vessel fractured just below the bolt head. Liquid penetrant testing revealed a large network of cracks that extended radially from sites in and just below the bolthead. Metallographic analysis indicated that the tap bolt failed by...
Abstract
An aluminum bronze propeller tap bolt from a twin-screw vessel fractured just below the bolt head. Liquid penetrant testing revealed a large network of cracks that extended radially from sites in and just below the bolthead. Metallographic analysis indicated that the tap bolt failed by stress-corrosion cracking. It was surmised that seawater or some other corrosive substance was present in sufficient quantity to induce intergranular cracking at regions of high stress concentration. It was recommended that all tap bolts be replaced with new bolts made from an alloy with a higher copper content and at least the same yield strength. Steps to exclude seawater and any possible source of ammonia from the bolt shank were also suggested.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001116
EISBN: 978-1-62708-214-3
... at the outside surface. Metallographic analysis showed that the fracture originated in the upturned fibers adjacent to the ERW bond line. Cross sections of the weld were removed from three random locations in the test sample. At each location, the up turned fibers of the weld zone contained bands of...
Abstract
Two failures of AP15A grade J-55 electric resistance welded (ERW) tubing in as our gas environment were investigated. The first failure occurred after 112 days of service. Replacement pipe failed 2 days later. Surface examination of the failed tubing indicated that fracture initiated at the outside surface. Metallographic analysis showed that the fracture originated in the upturned fibers adjacent to the ERW bond line. Cross sections of the weld were removed from three random locations in the test sample. At each location, the up turned fibers of the weld zone contained bands of hard-appearing microstructure. Hardness measurements confirmed these observations. The cracks followed these bands. It was concluded that the tubing failed from sulfide stress cracking, which resulted from bands of susceptible microstructure in the ERW zone. The banded microstructure in the pipe suggested that chemical segregation contributed to the hard areas. Postweld normalized heat treatment apparently did not sufficiently reduce the hardness of these areas.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001319
EISBN: 978-1-62708-215-0
... observed, indicating contamination by rusted carbon steel particles. Liquid penetrant testing was used to determine the extent of the cracks, and in situ metallographic analysis was performed over the cracked region. The morphology of the cracks was indicative of transgranular stress-corrosion cracking...
Abstract
Several type 304L stainless steel dished ends used in the fabrication of cylindrical vessels developed extensive cracking during storage. All of the dished ends had been procured from a single manufacturer and belonged to the same batch. When examined visually, several rust marks were observed, indicating contamination by rusted carbon steel particles. Liquid penetrant testing was used to determine the extent of the cracks, and in situ metallographic analysis was performed over the cracked region. The morphology of the cracks was indicative of transgranular stress-corrosion cracking (TGSCC). Conditions promoting the occurrence of the TGSCC included significant tensile stresses on the inside of the dished ends, the presence of surface contamination by iron due to poor handling practice using carbon steel implements, and storage in a coastal environment with an average temperature of 25 to 32 deg C (77 to 90 deg F), an average humidity ranging from 70 to 80%, and an atmospheric NaCl content ranging from 8 to 45 mg/m2 /day. Recommendations preventing further occurrence of the situation were strict avoidance of the use of carbon steel handling implements, strict avoidance of cleaning practices that cause long-term exposure to chlorine-containing cleaning fluid, and solution annealing of the dished ends at 1050 deg C (1920 deg F) for 1 h followed by water quenching to relieve residual stresses.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001374
EISBN: 978-1-62708-215-0
... seats. Visual examination revealed severe localized metal loss in the form of deep grooves with smooth and wavy surfaces. Metallographic analysis of the grooved areas revealed uniform metal loss. No evidence of intergranular or selective attack indicating erosion-corrosion was observed, Recommendations...
Abstract
Two hot water reheat coil valves from a heating/ventilating/air-conditioning system failed in service. The values, a 353 copper alloy 19 mm (3/4 in.) valve and a 360 copper alloy 13 mm (1/2 in.) valve, had been failing at an increasing rate. The failures were confined to the stems and seats. Visual examination revealed severe localized metal loss in the form of deep grooves with smooth and wavy surfaces. Metallographic analysis of the grooved areas revealed uniform metal loss. No evidence of intergranular or selective attack indicating erosion-corrosion was observed, Recommendations included use of a higher-copper brass, cupronickel, or Monel for the valve seats and stems and operation of the valves in either the fully opened or closed position.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001375
EISBN: 978-1-62708-215-0
... heat. Visual examination showed that the casting had cracked through a thin area in the casting sidewall. Evidence of a sharply machined corner at the fracture site was also discovered. Tensile testing and metallographic analysis revealed no metallurgical cause for the failure. It was recommended that...
Abstract
Three sprinkler system dry pipe valve castings (class 30 gray iron), two that had failed in service and one that had been rejected during machining because of porosity, were submitted for examination. The two failures consisted of cracks in a seating face. All three were from the same heat. Visual examination showed that the casting had cracked through a thin area in the casting sidewall. Evidence of a sharply machined corner at the fracture site was also discovered. Tensile testing and metallographic analysis revealed no metallurgical cause for the failure. It was recommended that the manufacturer work with the foundry to evaluate the criticality of core placement and to eliminate the undesired thin section.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001311
EISBN: 978-1-62708-215-0
... stainless steel tubes. Visual and stereoscopic examination revealed three types of corrosion on the inside surfaces of the tubes: uniform attack, deeper localized corrosive attack, and accelerated uniform attack. Metallographic analysis indicated that pronounced dissimilar-metal corrosion had occurred in...
Abstract
Several nickel-base superalloy (UNS N06600) welded heat-exchanger tubes used in processing black liquor in a kraft paper mill failed prematurely. Leaking occurred through the tube walls at levels near the bottom tube sheet. The tubes had been installed as replacements for type 304 stainless steel tubes. Visual and stereoscopic examination revealed three types of corrosion on the inside surfaces of the tubes: uniform attack, deeper localized corrosive attack, and accelerated uniform attack. Metallographic analysis indicated that pronounced dissimilar-metal corrosion had occurred in the base metal immediately adjacent to the weld seam. The corrosion was attributed to exposure to nitric acid cleaning solution and was accelerated by galvanic differences between the tubes and a stainless steel tube sheet and between the base metal of the tubes and their dendritic weld seams. A change to type 304 stainless steel tubing made without dendritic weld seams was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001000
EISBN: 978-1-62708-229-7
... of 1 Cr, 0.5 Mo steel with a wall thickness of 14 mm. The design temperature of this tube was 490 deg C, but there is evidence that it was operating at a temperature much above 500 deg C. Metallographic analysis disclosed an advanced stage of creep damage accumulation in the form of local cracks...
Abstract
Rupture occurred at a bend in a superheated steam transfer line between a header and a desuperheater of a boiler producing 230 t/h of steam at 540 deg C and 118 kPa. The boiler had operated for 77,000 h. Rupture occurred along the outer bend radius of the 168 mm diam tube, this being of 1 Cr, 0.5 Mo steel with a wall thickness of 14 mm. The design temperature of this tube was 490 deg C, but there is evidence that it was operating at a temperature much above 500 deg C. Metallographic analysis disclosed an advanced stage of creep damage accumulation in the form of local cracks, microcracks, and aligned damage centers which showed up as voids upon repeated polish-etch cycles. Because of the local nature of creep damage that can occur, any inspection that involves in situ metallography must be conducted at exactly the right or critical position or the presence of damage may not be detected.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
... Abstract A failure analysis investigation was conducted on a fractured aluminum tailwheel fork which failed moments after the landing of a privately owned, 1955 twin-engine airplane. Nondestructive evaluation via dye-penetrant inspection revealed no discernible surface cracks. The chemical...
Abstract
A failure analysis investigation was conducted on a fractured aluminum tailwheel fork which failed moments after the landing of a privately owned, 1955 twin-engine airplane. Nondestructive evaluation via dye-penetrant inspection revealed no discernible surface cracks. The chemical composition of the sand-cast component was identified via optical emission spectroscopy and is comparable to an aluminum sand-cast alloy, AA 712.0. Metallographic evaluation via optical microscopy and scanning electron microscopy revealed a high degree of porosity in the microstructure as well as the presence of deleterious intermetallic compounds within interdendritic regions. Macrohardness testing produced hardness values which are noticeably higher than standard hardness values for 712.0. The primary fracture surfaces indicate evidence of mixed-mode fracture, via intergranular cracking, cleaved intermetallic particles, and dimpled cellular regions in the matrix. The secondary fracture surface demonstrates similar features of intergranular fracture.