1-20 of 107 Search Results for

Medium-carbon alloy steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001434
EISBN: 978-1-62708-236-5
... subsequently developed. The rod was made from a medium carbon or low-alloy steel in the hardened and fully tempered condition. Evidence indicated that, following modification to the oil feed system, the rod that broke was returned to service with fine cracks present immediately below the weld deposit, which...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001270
EISBN: 978-1-62708-215-0
...Abstract Abstract An investigation was conducted to determine the factors responsible for the occasional formation of cracks on the parting lines of medium plain carbon and low-alloy medium-carbon steel forgings. The cracks were present on as-forged parts and grew during heat treatment...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046476
EISBN: 978-1-62708-234-1
... containing more than 0.03% carbon had been sensitized and placed in contact in service with a corrosive medium at temperatures in the sensitizing range. Recommendations included changing material for the pot from type 304 stainless steel to Hastelloy N (70Ni-17Mo-7Cr-5Fe). Maximum corrosion resistance...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047479
EISBN: 978-1-62708-221-1
...Abstract Abstract A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047428
EISBN: 978-1-62708-235-8
...Abstract Abstract A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001383
EISBN: 978-1-62708-215-0
..., which is satisfied by the chemistry and heat treatment of medium-carbon alloy steels. The basic configurations for the studs involved are shown in Fig. 1 . Fig. 1 Wheel stud configurations. (a) Front 1– 1 8 -in. stud. (b) Rear 3 4 -in. stud Circumstances Leading...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0048592
EISBN: 978-1-62708-218-1
... of failure. Specifications for the threaded fasteners in the assembly called for 3 8 -24 UNF, SAE, grade 8, hexagon-head cap screws made of medium-carbon alloy steel, quenched and tempered to a hardness of 32 to 38 HRC and a minimum tensile strength of 1034 MPa (150 ksi). Fig. 1 Drive-line...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001678
EISBN: 978-1-62708-218-1
.... Automotive wheels Bolts Galvanized steels Medium-carbon alloy steel Fatigue fracture Analysis of service failures is a complicated business because several mechanisms can operate simultaneously or sequentially. For example a structural component, bolt (fastener) holding the wheel of a vehicle can...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001306
EISBN: 978-1-62708-215-0
... Specifications The wheel studs were specified to be Grade 8.1 under SAE Standard J429, “Mechanical and Material Requirements for Externally Threaded Fasteners.” Medium-carbon alloy steels in general and alloy 1541 in particular meet the requirements of this standard. The torque requirement for both...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003539
EISBN: 978-1-62708-180-1
...: Ref 11 Fig. 5 Subsurface fatigue origin in-service failure of 6.4 cm (2.5 in.) nitrided medium-carbon alloy steel crank pin. In contrast with the fracture surface shown in Fig. 4 , produced in the laboratory under continuous uniform loading, this surface exhibits beach marks. Courtesy...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... bending. Note absence of beach marks. Source: Ref 11 Fig. 5 Subsurface fatigue origin in-service failure of 6.4 cm (2.5 in.) nitrided medium-carbon alloy steel crank pin. In contrast with the fracture surface shown in Fig. 4 , produced in the laboratory under continuous uniform loading...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001763
EISBN: 978-1-62708-241-9
.... splined shaft fatigue fracture transient torsional overloading medium carbon steel spline teeth deformation stress analysis fracture toughness SAE/AISI 1045 (medium-carbon alloy steel) UNS G10450 Introduction All-terrain vehicles (ATVs) can be considered fourwheeled motorcycles for off...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... steel, showing material fracture at edge of contact surface Fig. 24 More severe material fracture/spalling on surface of disk made from tougher, medium-carbon alloy steel Fig. 25 Micrograph showing the edge of the contact face in an H13 disk. Mushrooming is occurring due to contact...
Book Chapter

Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... equipment Table 1 General classification of abrasive wear in mining and minerals processing equipment Classification Gouging abrasion High-stress abrasion Low-stress abrasion Erosion-corrosion Abrasive size Large Medium Small Fine Contact conditions  Impact High Low Low Low...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
... of medium-carbon alloy steel, quenched and tempered to a hardness of 32 to 38 HRC and a minimum tensile strength of 1034 MPa (150 ksi). Fig. 7 Drive-line assembly that failed because of fatigue fracture of two cap screws. The screws were made of modified 1035 steel instead of the specified medium...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001721
EISBN: 978-1-62708-225-9
... to ascertain as present is the static tensile force produced from the applied bolt torque as detailed in Table 2 . The susceptibility of a given material is often directly related to the type of environment in which the material was used. In the case of the bonnet screws which are a low to medium carbon alloy...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... and plastic distortion, which is due to the temperature dependence of yield strength ( Ref 13 ). Figure 15 shows the distortion of round steel bars (200 mm, or 8 in., in diameter and 500 mm, or 20 in., in length) by quenching and by stress relieving by tempering. A medium-carbon steel bar (upper diagrams...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001171
EISBN: 978-1-62708-219-8
... , Ref 10 , 11 , 12 . The more common are: A reduction of the carbon content of the steel The aim of this technique is to reduce the amount of M 23 C 6 at the austenitic grain boundaries. This method is the basis of some commercial alloys as, for example, the extra-low carbon stainless...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... to their hardness. Figure 5 illustrates surface morphologies of cold-worked AISI 1045 medium-carbon steel samples that were predeformed at two different strain rates (0.75 × 10 −2 /s and 1/s) and subjected to wear in a 3.5% NaCl solution. Figure 5(a) shows that the sample predeformed at 0.75 × 10 −2 /s was worn...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001813
EISBN: 978-1-62708-241-9
... in ferrite. The graphitization reaction is represented schematically in Fig. 2 which also shows how the reaction is accelerated with increase in temperature. Fig. 1 A graphitized medium carbon steel; ( a ) graphite nodule in pearlite, with uniform distribution of cementite particles in pearlite...