1-20 of 766 Search Results for

Mechanical properties

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... Abstract A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack...
Image
Published: 01 June 2019
Fig. 3 Influence of carbon content on mechanical properties More
Image
Published: 01 January 2002
Fig. 16 Mechanical properties of quenched and tempered low-alloy steel (0.30–0.50 wt% C) as determined by Patton. Source: Ref 11 More
Image
Published: 01 January 2002
Fig. 17 Mechanical properties of quenched and tempered low-alloy steel (0.30–0.45 wt% C) as determined by Janitsky and Baeyertz. Source: Ref 12 More
Image
Published: 01 January 2002
Fig. 18 Mechanical properties of quenched and tempered plain carbon and Ni-Cr-Mo steels. Source: Ref 13 More
Image
Published: 30 August 2021
Fig. 3 Bingham-Maxwell expression for the mechanical properties of a solder alloy More
Image
Published: 15 May 2022
Fig. 16 Dynamic mechanical properties of solids. (a) Torsion, (b) tension, (c) bending, and (d) compression More
Image
Published: 15 May 2022
Fig. 17 Dynamic mechanical properties of polyethylene terephthalate film as a function of temperature; 0.05 mm (0.002 in.) thin specimen, 6.28 rad/s frequency More
Image
Published: 15 May 2022
Fig. 18 Dynamic mechanical properties of a cylindrical urethane foam sample; 6.60 mm (0.26 in.) diameter, 6.28 rad/s frequency More
Image
Published: 15 May 2022
Fig. 19 Dynamic mechanical properties in three-point bending More
Image
Published: 15 May 2022
Fig. 21 Dynamic mechanical properties of two acrylonitrile-styrene terpolymers, 1 Hz More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006928
EISBN: 978-1-62708-395-9
... Abstract This article briefly introduces some commonly used methods for mechanical testing. It describes the test methods and provides comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are also briefly...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... Abstract This article describes the viscoelastic behavior of plastics in their solid state only, from the standpoint of the material deforming without fracturing. The consequences of viscoelasticity on the mechanical properties of plastics are described, especially in terms of time-dependencies...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
... of additives. This article is divided into five sections: mechanical property modifiers, physical property modifiers, biological function modifiers, processing aids, and colorants. It describes three classes of additives that are used to inhibit biological activity, six classes of mechanical property modifiers...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001531
EISBN: 978-1-62708-231-0
... Abstract In this study, the failure modes of cartwheel and mechanical properties of materials have been analyzed. The results show that rim cracking is always initiated from stringer-type alumina cluster and driven by a combination effect of mechanical and thermal load. The strength, toughness...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006849
EISBN: 978-1-62708-395-9
... has been well documented. One advantage of the protocols discussed in this article is the relatively small sample size being characterized. Unfortunately, some of the commonly used test methods for reported mechanical properties involve test specimens (or coupons) that can be both processing...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
... Abstract The article commences with an overview of short-term and long-term mechanical properties of polymeric materials. It discusses plasticization, solvation, and swelling in rubber products. The article further describes environmental stress cracking and degradation of polymers...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
... polymers, heterochain polymers, and polymers containing aromatic rings. The article also includes some general information on the classification and naming of polymers and plastics. The most important properties of polymers, namely, thermal, mechanical, chemical, electrical, and optical properties...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001268
EISBN: 978-1-62708-215-0
... in the laboratory. The resultant increase in mechanical properties of the re-heat-treated material indicated that the original heat treatment was not performed correctly. The failure was attributed to improper heat treatment. Recommendations focused on more stringent quality control of the heat-treat operations...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006910
EISBN: 978-1-62708-395-9
... Abstract There are many different types of polymeric materials, ranging from glassy to semicrystalline polymers and even blends. Their mechanical properties range from pure elastic with very high strains to fracture (elastomers) to almost pure linear elastic (Hookian behavior) with low strains...