Skip Nav Destination
Close Modal
Search Results for
Materials substitution
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 124 Search Results for
Materials substitution
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001545
EISBN: 978-1-62708-236-5
.... Caustic, not chloride, stress corrosion was the culprit. Had material substitutions been made on the original premise of countering chloride stress corrosion, most of the loop's highly stressed components would have eventually failed. Bearings Bellows Caustic stress corrosion cracking 304 UNS...
Abstract
The presence of secondary, branching intergranular stress-corrosion cracking in a type 440C stainless bearing caused the analyst to overlook the real culprit, which was a mechanically-initiated, primary transgranular crack that propagated through the steel's hard chromium carbide. Failure was actually caused by overload. Had the original conclusion been accepted, a relatively exotic alloy would have been specified. In another case, brass heat exchanger tube failure was automatically attributed to attack by an acidic cleaner, and a decision was made to stop using the solution. A more thorough analysis showed failure was caused by tube vibration. In a third case, a type 304 stainless steel bellows in a test loop was thought to have failed because of chloride stress corrosion. The report concluded with a recommendation that carbon steel be used as an alternative bellows material. Caustic, not chloride, stress corrosion was the culprit. Had material substitutions been made on the original premise of countering chloride stress corrosion, most of the loop's highly stressed components would have eventually failed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046422
EISBN: 978-1-62708-234-1
... the conclusion that the damage was due to liquid erosion, but it could not be firmly established whether it was caused by cavitation or by liquid impact. Recommendations included making a material substitution (to Mo-13Cr-4Ni stainless steel) and doing a redesign to reduce susceptibility to erosion as well...
Abstract
Stator vanes (cast from a Cu-Mn-Al alloy) in a hydraulic dynamometer used in a steam-turbine test facility were severely eroded. The dynamometer was designed to absorb up to 51 MW (69,000 hp) at 3670 rpm, and constituted an extrapolation of previous design practices and experience. Its stator was subject to severe erosion after relatively short operating times and initially required replacement after each test program. Although up to 60 cu cm (3.7 cu in.) of material was being lost from each vane, it only reduced the power-absorption capacity by a small amount. Analysis supported the conclusion that the damage was due to liquid erosion, but it could not be firmly established whether it was caused by cavitation or by liquid impact. Recommendations included making a material substitution (to Mo-13Cr-4Ni stainless steel) and doing a redesign to reduce susceptibility to erosion as well as erosion-producing conditions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001012
EISBN: 978-1-62708-234-1
... Leakage Materials substitution Mercury Radiators Brass Intergranular fracture Stress-corrosion cracking An interstage radiator gas coil began leaking after only 45 days of service. The original brass coil (part of which is shown in Fig. 1 with several aluminum fins removed) was replaced three...
Abstract
An interstage radiator gas coil began leaking after only 45 days of service. The original brass coil with several aluminum fins was replaced three times but each replacement lasted less than a day. After removing the fins, leaks were found at circumferential cracks. A section of a tube was removed and split, revealing a series of cracks, evenly spaced. Crack spacing coincided with fin spacing, indicating that stresses incurred during installation of the fins promoted failure. Metallographic examination showed intergranular, branched cracking, characteristic of stress corrosion failures, with the cracks starting on the inside surfaces of the tubes. There was no known corrosive agent in the system, and no other corrosion damage could be found. Qualitative tests and spectrographic analysis gave a positive indication for mercury. The spacing of the cracks, the branched intergranular cracking, the rapid failure, and presence of mercury led to the conclusion of stress-corrosion cracking. It was impossible to remove mercury from the system so carbon steel coils were substituted for the brass ones. The carbon steel coils gave failure-free service for over nine years.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0006898
EISBN: 978-1-62708-233-4
...-nickel, solving the SCC problem. Cupronickel Electric fuses, Materials substitution Nickel brasses 59Cu-12Ni-29Zn Stress-corrosion cracking Several fuses, made of nickel silver (57 to 61% Cu, 11 to 13% Ni, bal Zn), exposed in central offices where the air contained industrial atmospheric...
Abstract
Several fuses made of nickel silver (57 to 61% Cu, 11 to 13% Ni, bal Zn) exposed to air containing ammonium and nitrate ions failed by SCC. Test solutions of 1 N ammonium nitrate (NH4NO3) and a 1:1 mixture of 1 N sodium nitrate (NaNO3) and 1 N calcium nitrate (Ca(NO3) 2) were prepared. In addition, stressed fuses made of nickel silver and of cupro-nickel (80Cu-20Ni) were exposed to a drop of corrosive solution in the stressed area. All nickel silver specimens failed after two days of exposure to NH4NO3 solution. However, 17% of them failed and 67% showed crack initiation but no failure after 42 days of exposure to NaNO3 + Ca(NO3)2 solution. None of the cupro-nickel specimens failed, but among those exposed to NH4NO3, 17% displayed crack initiation and 83% showed partial dealloying after 42 days. Based on the test results, the fuse material was changed from nickel silver to cupro-nickel, solving the SCC problem.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048698
EISBN: 978-1-62708-228-0
... grain size was interpreted to have contributed. The piping material was changed from carbon steel to AISI type 316 stainless steel as it is readily weldable and resistant to corrosion by hydrogen sulfide. Pipe fittings Materials substitution Sulfurization Low-carbon steel Stress-corrosion...
Abstract
Wet natural gas was dried by being passed through a carbon steel vessel that contained a molecular-sieve drying agent. The drying agent became saturated after several hours in service and was regenerated by a gas that was heated to 290 to 345 deg C in a salt-bath heat exchanger. The tee joint in the piping between the heat exchanger and the sieve bed failed after 12 months. A hole in the tee fitting and a corrosion product on the inner surface of the pitting was revealed by visual examination. Iron sulfide was revealed by chemical analysis of the scale which indicated hydrogen sulfide attack on the carbon steel. The presence of oxygen was indicated by the carbon and sulfur found in the scale on the piping and in the sieves indicated that oxygen combined with moisture produced conditions for attack of hydrogen sulfide on carbon steel. Turbulence with some effect from the coarse grain size was interpreted to have contributed. The piping material was changed from carbon steel to AISI type 316 stainless steel as it is readily weldable and resistant to corrosion by hydrogen sulfide.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001013
EISBN: 978-1-62708-234-1
... of corrosion damage after three years' exposure. This change was made five years ago and there have been no failures since. Corrosion environments Gas pipelines Inhibitors Materials substitution Sweet gas Carbon steel Erosion - corrosion Velocity-affected corrosion A wall section of a carbon...
Abstract
A wall section of a carbon steel choke body in gas service at 4400 psig blew out three months after the use of a corrosion inhibitor was stopped. Corrosion damage occurred in ripples, leaving both smoothly polished and unattacked areas. The corrodent in condensate wells was principally carbon dioxide dissolved in water condensed from the gas stream, with organic acids possibly an aggravating factor. A gas analysis showed no other corrosive agents. No metallurgical or fabrication defects were found in the carbon steel part. The mode of attack was corrosion-erosion, caused by the corrosive, high velocity gas flow. The corrosion rate of either the inhibited or uninhibited gas stream was too high for equipment in high pressure gas service. Type 410 (12% Cr) stainless steel was recommended for the choke bodies because other equipment such as valves made of type 410 showed no evidence of corrosion damage after three years' exposure. This change was made five years ago and there have been no failures since.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0006417
EISBN: 978-1-62708-234-1
... stainless steel was also recommended. Cadmium plating Corrosion prevention Corrosion products Energy dispersive x ray analysis Inhibitors Iron oxides Materials substitution Pipe bends Scanning electron microscopy 4340 UNS G43400 (Other, general, or unspecified) corrosion A cadmium...
Abstract
A cadmium-plated 4340 Ni-Cr-Mo steel ballast elbow assembly was submitted for failure analysis to determine the element or radical present in an oxidation product found inside the elbow assembly. Energy-dispersive x-ray analysis in the SEM showed that iron was the predominant species, presumably in an oxide form. The inside surface had the appearance of typical corrosion products. Hardness measurements indicated that the 4340 steel was heat treated to a strength of approximately 862 MPa (125 ksi). It was concluded that the oxide detected on the ballast elbow was iron oxide. The possibility that the corrosion products would eventually create a blockage of the affected hole was great considering the small hole diameter (4.2 mm, or 0.165 in.). It was recommended that a quick fix to stop the corrosion would be to apply a corrosion inhibitor inside the hole. This, however, would cause the possibility of inhibitor buildup and the eventual clogging of the hole. A change in the manufacturing process to include a cadmium plating on the hole inside surface was recommended. This was to be accomplished in accordance with MIL specification QQ-P-416, Type II, Class 1. A material change to 300-series stainless steel was also recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0006897
EISBN: 978-1-62708-222-8
... the tail wire material for direct seashore exposure from annealed copper to annealed Monel. Abrasion Clamps, Materials substitution Salt water environment Copper wire Corrosion fatigue The small cable (drop wire) providing service for individual subscribers from the aerial plant is held...
Abstract
The small cable (drop wire) providing service for individual subscribers from the aerial plant is held in place by a clamp made of a tin-coated brass body (attached to the cable) and a copper tail wire loop (attached to a galvanized steel hook or to a porcelain insulator). The tail wire is 2.6 mm (0.102 in.) diam annealed copper, and the clamp assembly must withstand a 2470 N (555 lb) load without breaking or slipping. A number of these clamps, located a few hundred feet from the ocean, have failed. The sharply broken wire indicated to weakening by abrasion. The copper tail wire failures had characteristics generally associated with corrosion fatigue. The broken wires showed multiple transgranular cracks near the failure, originating at the bases of pits. It was diagnosed that the copper tail wire failures were due to corrosion fatigue. The solution to this problem was to change the tail wire material for direct seashore exposure from annealed copper to annealed Monel.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048665
EISBN: 978-1-62708-217-4
.... It was concluded that stress-corrosion cracks grew out from the rust pits. The pin material was changed from 300M steel to PH 13-8 Mo stainless steel, which is highly resistant to rusting and SCC and the jacking control system was modified to prevent overdriving. Landing gear Materials substitution Pitting...
Abstract
The jackscrew drive pins on a landing-gear bogie failed when the other bogie on the same side of the airplane was kneeled for tire change. The pins, made of 300M steel, were shot peened and chromium plated on the outside surface and were cadmium plated and painted with polyurethane on the inside surface. The top of the jackscrew was 6150 steel. Both ends of the pins were revealed to be dented where the jackscrew had pressed into them and were observed to have been resulted due to overdriving the jackscrew at the end of an unkneeling cycle. These dented areas were found to be heavily corroded with chromium plating missing. A heavily corroded intergranular fracture mode was revealed by chromium-carbon replicas of the areas of fracture origin. Deep corrosion pits adjacent to the fracture origins and directly beneath cracks in the chromium plate were revealed by metallographic examination. It was concluded that stress-corrosion cracks grew out from the rust pits. The pin material was changed from 300M steel to PH 13-8 Mo stainless steel, which is highly resistant to rusting and SCC and the jacking control system was modified to prevent overdriving.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006421
EISBN: 978-1-62708-217-4
... propagation Fasteners High cycle fatigue Materials substitution AZ31B UNS M11311 (Other, general, or unspecified) corrosion Fatigue fracture Cracks were found on the wing leading edge of a test aircraft. The cracks were located on the inboard side of the No. 2 and No. 3 engines. Crack lengths were...
Abstract
Cracks were found on the wing leading edge of a test aircraft made from AZ31B magnesium alloy. Crack lengths were approximately 230 mm (9 in.) long on the left side and approximately 130 mm (5 in.) long on the right side. The cracks ran parallel to the leading edge. The 230-mm (9-in.) crack was received for examination. Visual examination of the submitted panel revealed two cracks. One crack ran through six adjacent fastener holes. Sections of the beveled edges of the holes were missing and corrosion was evident. Visual examination of the fastener holes after separation of the crack showed that the fracture faces were corroded. Optical examination of either side of the middle group of fastener holes showed that the area of suspected crack initiation had suffered excessive corrosion. Examination of the holes on the end of the crack showed fracture characteristics typical of fatigue and/or corrosion fatigue. It was concluded that crack propagation of the fracture in the wing panel occurred by a combination of corrosion and high-cycle fatigue in the end fastener holes. It was recommended that future panels be manufactured of 2024 aluminum.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0092131
EISBN: 978-1-62708-234-1
..., Materials substitution Cold-drawn high-carbon steel Gross yielding The engine of an automobile lost power and compression and emitted an uneven exhaust sound after several thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves...
Abstract
The engine of an automobile lost power and compression and emitted an uneven exhaust sound after several thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves was too short to function properly. The short steel spring and an outer spring (both of patented and drawn high-carbon steel wire) taken from another cylinder in the same engine were examined in the laboratory to determine why one had distorted and the other had not. Investigation (visual inspection, microstructure examination, and hardness testing) supported the conclusion that the engine malfunctioned because one of the exhaust-valve springs had taken a 25% set in service. Relaxation in the spring material occurred because of the combined effect of improper microstructure (proeutectoid ferrite) plus a relatively high operating temperature. Recommendations included using quenched-and-tempered steel instead of patented and cold-drawn steel or using a more expensive chromium-vanadium alloy steel instead of plain carbon steel; the chromium-vanadium steel would also need to be quenched and tempered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0006900
EISBN: 978-1-62708-225-9
... behavior of type 316 stainless steel. The problem was solved by changing the clamp material from type 301 to type 316 stainless steel and by eliminating the MoS2 antiseize compound. Clamps, Materials Substitution Lubricants Sulfurization 301 UNS S30100 Brittle fracture Hydrogen damage...
Abstract
Several type 301 half-hard stainless steel clamps used to hold cylindrical galvanized steel covers to galvanized cast iron bases failed in flooded manholes after one to six months of service. Before service, they were treated with antiseize compound containing MoS2. Based on the conditions (the clamp is the cathode of a galvanic cell with zinc) and the brittle nature of the cracks, the failures were diagnosed as hydrogen-stress cracking. Laboratory experiments were conducted to substantiate the above diagnosis and to evaluate the effect of annealing and the hydrogen-stress cracking behavior of type 316 stainless steel. The problem was solved by changing the clamp material from type 301 to type 316 stainless steel and by eliminating the MoS2 antiseize compound.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006432
EISBN: 978-1-62708-217-4
.... It was concluded that the bolt failed by a combination of SCC and fatigue. It was recommended that aerospace-quality fasteners meeting NAS 7104, NAS 7204, or NAS 7504 be used to replace the currently used fasteners. Cyclic fatigue Fasteners, Materials substitution 1040 UNS G10400 Stress-corrosion...
Abstract
A failed 25 x 32 mm (1 x 1 in.) cadmium-plated 1040 carbon steel countersunk head type nose gear door securing bolt with a common screwdriver slot was examined. Fracture originated at a thread root and propagated across the cross section. The topography of the fracture was excessively rough and more granular than would be expected from pure mechanical fatigue. This indicated an allied corrosion mechanism. Cracks other than the one leading to failure were observed. Metallographic examination of the bolt cross section showed many cracks typical of stress-corrosion damage. It was concluded that the bolt failed by a combination of SCC and fatigue. It was recommended that aerospace-quality fasteners meeting NAS 7104, NAS 7204, or NAS 7504 be used to replace the currently used fasteners.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006914
EISBN: 978-1-62708-395-9
... material: modifying or substituting the basic polymer so that exposure to heat and oxygen will not produce rapid combustion, and using flame-retardant additives. It also provides an overview of the burning process and presents two flammability test methods. combustion properties fire resistance...
Abstract
A material is flammable if it is subject to easy ignition and rapidly flaming combustion. The plastics that are most widely used are the least expensive and tend to be the most flammable. This article describes the two basic approaches to improving the fire resistance of a polymeric material: modifying or substituting the basic polymer so that exposure to heat and oxygen will not produce rapid combustion, and using flame-retardant additives. It also provides an overview of the burning process and presents two flammability test methods.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0006899
EISBN: 978-1-62708-225-9
... serve as a replacement material. Based on test results, the solution to the hydrogen-stress cracking problem consisted of changing the bolt from type 410 to 305 stainless steel, eliminating use of MoS2, and limiting the torque to 60 N·m (540 in.·lb). Bolts, Materials substitution Lubricants...
Abstract
Type 410 stainless steel bolts were used to hold together galvanized gray cast iron splice case halves. Before installation, the bolts were treated with molybdenum disulfide (MoS 2 ) antiseize compound. Several failures of splice case bolts were discovered in flooded manholes after they were in service for three to four months. Laboratory experiments were conducted to determine if the failure mode was hydrogen-stress cracking, if sulfides accelerate the failure, if heat treatment can improve the resistance against this failure mode, and if the type 305 austenitic stainless steel would serve as a replacement material. Based on test results, the solution to the hydrogen-stress cracking problem consisted of changing the bolt from type 410 to 305 stainless steel, eliminating use of MoS2, and limiting the torque to 60 N·m (540 in.·lb).
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0091853
EISBN: 978-1-62708-223-5
... the conclusion that the primary feed material was harder than the grinding plates, causing wear and eventual failure. Recommendations included reducing the clearance between the flutes and possible material changes. Grinding wheels, Materials substitution Milling Gray iron Abrasive wear...
Abstract
A 230 mm (9 in.) diameter disk attrition mill was scheduled to grind 6.35 mm (0.25 in.) diameter quartz particles to a 0.075 mm (0.003 in.) diameter powder. Due to severe wear on the grinding plates, however, the unit was unable to complete the task of grinding the rock. The mill consisted of a heavy gray cast iron frame, a gravity feeder port, a runner, and a heavy-duty motor. The frame and gravity feeder weighed over 200 kg (440 lb) and, in some areas, was over 25 mm (1 in.) thick. To obtain the operating speed of 200 rpm, a gear system was used to transmit the torque from the 2-hp motor. The runner consisted of a 50 mm (2 in.) diameter shaft and two gray cast iron grinding plates. Investigation (visual inspection, historical review, photographs, model testing of new plates, chemical analysis, hardness testing, optical macrographs, and optical micrographs) supported the conclusion that the primary feed material was harder than the grinding plates, causing wear and eventual failure. Recommendations included reducing the clearance between the flutes and possible material changes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001606
EISBN: 978-1-62708-226-6
..., it is the displacement of the structure and the stiffness of the materials that determine the stresses and the stress concentrations that develop. If all other conditions are equal and titanium were substituted for austenitic stainless steel, then the stresses in the structures would be reduced by an amount related...
Abstract
Failures of four different 300-series austenitic stainless steel biomedical fixation implants were examined. The device fractures were observed optically, and their surfaces were examined by scanning electron microscopy. Fractography identified fatigue to be the failure mode for all four of the implants. In every instance, the fatigue cracks initiated from the attachment screw holes at the reduced cross sections of the implants. Two fixation implant designs were analyzed using finite-element modeling. This analysis confirmed the presence of severe stress concentrations adjacent to the attachment screw holes, the fatigue crack initiation sites. Conclusions were reached regarding the design of these types of implant fixation devices, particularly the location of the attachment screw holes. The use of austenitic stainless steel for these biomedical implant devices is also addressed. Recommendations to improve the fixation implant design are suggested, and the potential benefits of the substitution of titanium or a titanium alloy for the stainless steel are discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001548
EISBN: 978-1-62708-219-8
.... It was later shown that a material substitution had been intentionally made, and the aluminum was not defective. After having determined the failure to be the result of corrosion, the next step was to determine from where the corrosive agents were coming. Three possibilities were considered: From...
Abstract
In 1975, a manufacturer was awarded a contract to produce modular air-traffic control towers for the U.S. Navy. The specifications called for painted steel siding, but the manufacturer convinced the Navy to substitute aluminum-bonded-to-plywood panels that were provided by a supplier. In less than one year, the panels began to delaminate and the aluminum began to crack. It was found that the failure was the result of chloride-induced intergranular corrosion caused by chemicals in the adhesive and excessive moisture in the wood introduced during manufacturing.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... to illustrate the differences in deformation behavior between two different materials. Practically, one would not substitute stainless steel for low-carbon steel to increase load capacity. One would use a heavier section or perhaps a higher-strength alloy. When loads increase gradually, distortion...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... to illustrate the differences in deformation behavior between two different materials. As a practical matter, one would not substitute stainless steel for low-carbon steel to increase load capacity. One would use a heavier section, or perhaps, a higher-strength alloy. When loads increase gradually...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
1