Skip Nav Destination
Close Modal
By
Cassio Barbosa, Ibrahim de Cerqueira Abud, Tatiana Silva Barros, Sheyla Santana de Carvalho, Ieda Maria Vieira Caminha
Search Results for
Manganese-vanadium steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 50 Search Results for
Manganese-vanadium steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 June 2019
Fig. 7 a). Cracks in hardened and tempered axle journals of manganese-vanadium steel, cross sections, etched in nital. 100 ×. Branch of a long crack. b). Cracks in hardened and tempered axle journals of manganese-vanadium steel, cross sections, etched in nital. 100 ×. Short crack.
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001241
EISBN: 978-1-62708-235-8
.... How decarburization changes workpiece properties and the case of hydrogen decarburization are addressed through examples. Cracking (fracturing) Decarburizing Nitriding steel Manganese-vanadium steel Silicon spring steel Intergranular fracture Hydrogen damage and embrittlement High...
Abstract
Decarburization of steel may occur as skin decarburization by gases either wet or containing oxygen, and as a deep ongoing destruction of the material by hydrogen under high pressure. Guidelines are given for recognizing decarburization and determining at what point cracks occurred. How decarburization changes workpiece properties and the case of hydrogen decarburization are addressed through examples.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0090974
EISBN: 978-1-62708-235-8
... fracture through inclusion troughs. Fracture had apparently occurred below the ductile-to-brittle transition temperature for this material. The molybdenum, cobalt, and vanadium all exceeded the specification limits, and the sulfur content was near the maximum allowable. The aluminum content...
Abstract
A cast steel bracket manufactured in accordance with ASTM A 148 grade 135/125 steel failed in railroad maintenance service. Ancillary property requirements included a 285 to 331 HB hardness range and minimum impact energy of 27 J (20 ft·lbf) at -40 deg C (-40 deg F). The conditions at the time of failure were characterized as relatively cold. Investigation (visual inspection, chemical analysis, and unetched 119x and 2% nital etched 119x SEM images) supported the conclusion that the bracket failed through brittle overload fracture due to a number of synergistic factors. The quenched-and-tempered microstructure contained solidification shrinkage, inherently poor ductility, and type II Mn-S inclusions that are known to reduce ductility. The macro and microscale fracture features confirmed that the casting was likely in low-temperature service at the time of failure. The composition and mechanical properties of the casting did not satisfy the design requirements. Recommendations included exerting better composition control, primarily with regard to melting, deoxidation, and nitrogen control. Better deoxidation practice was recommended to generate the more desirable Mn-S inclusion morphology, and reevaluation of the casting design was suggested to minimize shrinkage.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001752
EISBN: 978-1-62708-241-9
... two grains. This LF5 FCI facet is approximately 0.1 mm (0.004-inch) across. Both failed crankshafts met the product check chemical quality requirements of AMS 6414 steel. The R1 failed crankshaft had a residual sulfur content of 0.003% by weight and no intentional vanadium (0.005%). R1 steel...
Abstract
Results of failure analyses of two aircraft crankshafts are described. These crankshafts were forged from AMS 6414 (similar composition to AISI 4340) vacuum arc remelted steels with sulfur contents of 0.003% (low sulfur) and 0.0005% (ultra-low sulfur). A grain boundary sulfide precipitate was caused by overheat of the low sulfur steel, and an incipient melting of grain boundary junctions was caused by overheat of the ultra-low sulfur steel. The precipitates and incipient melting in these two failed crankshafts were observed during the examination. As expected, impact fractures from the low sulfur steel crankshaft contained planar dimpled facets along separated grain boundaries with a small spherical manganese sulfide precipitates within each dimple. In contrast, planar dimpled facets along separated grain boundaries of impact fractures from the ultra-low sulfur crankshaft steel contained a majority of small spherical particles consisting of nitrogen, boron, iron, carbon, and a small amount of oxygen. Some other dimples contained manganese sulfide precipitates. Fatigue samples machined from the ultra-low sulfur steel crankshaft failed internally at planar grain boundary facets. Some of the facets were covered with nitrogen, boron, iron, and carbon film, while other facets were relatively free of such coverage. Results of experimental forging studies defined the times and temperatures required to produce incipient melting overheat and facets at grain boundary junctions of ultra-low sulfur AMS 6414 steels.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046205
EISBN: 978-1-62708-225-9
... alloy steel with the following nominal composition: Element Composition, % Carbon 0.42 Manganese 0.78 Phosphorus 0.025 max Sulfur 0.025 max Silicon 0.26 Chromium 0.87 Nickel 2.08 Molybdenum 0.28 Vanadium 0.25 The ductile-to-brittle transition...
Abstract
The splined shaft (1040 steel, heat treated to a hardness of 44 to 46 HRC and a tensile strength of approximately 1448 MPa, or 210 ksi) from a front-end loader used in a salt-handling area broke after being in service approximately two weeks while operating at temperatures near -18 deg C (0 deg F). During the summer, similar shafts had a service life of 5 to eight months. Examination of the fracture surface showed brittle fatigue cracks, and visual examination of the splines disclosed heavy chatter marks at the root of the spline, with burrs and tears at the fillet area. Evidence found supports the conclusion that the shaft failed as the result of stress in the sharp fillets and rough surfaces at the root of the splines. Cold weather failure occurred sooner than in hot weather because ductile-to-brittle transition temperature of the 1040 steel shaft was too high. Recommendations include redesign of the fillet radius to a minimum of 1.6 mm (0.06 in.) and a maximum surface finish in the spline area of 0.8 microns. Material for the shafts should be modified to a nickel alloy steel, heat treated to a hardness of 28 to 32 HRC before machining.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001368
EISBN: 978-1-62708-215-0
... 0.035 (max) Sulfur 0.014 0.011 0.040 (max) Chromium 0.99 0.96 0.80–1.10 Nickel 0.04 0.05 … Molybdenum 0.16 0.18 0.15–0.25 Copper 0.05 … … Vanadium 0.06 … … Fig. 1 Schematic of the hydroturbine plant Fig. 2 As-received pieces from the failed shaft...
Abstract
A forged 4140 steel shaft that connected two runners in a hydroturbine failed catastrophically after approximately 5900 h of service. The runner and the mating section of the broken shaft were examined and tested by various methods. The results of the analyses indicated that the shaft failed by torsional fatigue starting at subsurface crack initiation sites. The forging contained regions of crack like flaws associated with particles rich in chromium, manganese, and iron. Fracture features indicated that the fatigue cracks propagated under a relatively low stress.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001331
EISBN: 978-1-62708-215-0
... 0.024 0.030 (max.) 0.040 (max.) Sulfur 0.031 0.030 (max.) 0.050 (max.) Silicon 0.16 0.50 (max.) NR Chromium 0.05 1.90-2.60 NR Nickel 0.01 NR NR Molybdenum 0.01 0.87–1.13 NR Vanadium 0.04 NR NR (a) NR, no requirement Chemical composition of scale Table...
Abstract
A high-pressure steam pipe specified to be P22 low-alloy steel failed after 25 years of service. Located at the end of the steam line, the pipe reportedly received no steam flow during normal service. Visual examination of the failed pipe section revealed a window fracture that appeared brittle in nature. Specimens from the fracture area and from an area well away from the fracture were examined metallographically and chemically analyzed. Results indicated that the pipe had failed by hydrogen damage that resulted in brittle fracture. Chemical analysis indicated that the pipe material was 1020 carbon steel, not P22. The misapplication of pipe material was considered to be a contributing factor. Position of the pipe within the system caused the localized damage.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001795
EISBN: 978-1-62708-241-9
...Composition range of 100C6 steel Table 1 Composition range of 100C6 steel Elements Weight, % Elements Weight, % Carbon 0.95–1.1 Chromium 1.35–1.6 Silicon 0.15–0.35 Nickel ≤0.1 Manganese 0.2–0.4 Molybdenum ≤0.1 Sulfur ≤0.02 Vanadium ≤0.1 Phosphorus ≤0.03...
Abstract
A ball bearing in a military jet engine sustained heavy damage and was analyzed to determine the cause. Almost all of the balls and a portion of the outer race were found to be flaking, but there were no signs of damage on the inner race and cage. Tests (chemistry, hardness, and microstructure) indicated that the bearing materials met the specification requirements. However, closer inspection revealed areas of discoloration, or nonuniform contact marks, on the ID surface of the inner ring. The unusual wear pattern suggested that the bearing was not properly mounted, thus subjecting it to uneven or eccentric loading. This explains the preferential nature of the flaking on the outer race and points to an assembly error as the root cause of failure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001362
EISBN: 978-1-62708-215-0
... max Phosphorus 0.010 0.015 max Silicon 0.28 0.15–0.30 Nickel 3.55 2.50 min Chromium 0.41 0.75 max Molybdenum 0.41 0.25 min Vanadium 0.09 0.03 min Fig. 1 The rotor disc segment is shown as received for analysis Fig. 2 This photomacrograph shows a close...
Abstract
Numerous cracks observed on the surface of a forged A470 Class 4 alloy steel steam turbine rotor disc from an air compressor in a nitric acid plant were found to be the result of caustic induced stress-corrosion cracking (SCC). No material defects or anomalies were observed in the disc sample that could have contributed to crack initiation or propagation or secondary crack propagation. Chlorides detected in the fracture surface deposits were likely the primary cause for the pitting observed on the disc surfaces and within the turbine blade attachment area. It was recommended that the potential for water carryover or feedwater induction into the turbine be addressed via an engineering evaluation of the plant's water treatment procedures, steam separation equipment, and start-up procedures.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001354
EISBN: 978-1-62708-215-0
...-molybdenum-vanadium steels ( Fig. 4 ). Grain sizes were ASTM 7 and 8 on average. Visual examination of the turbine disk revealed multiple cracks on the inlet and outlet sides ( Fig. 1 ). The cracks were primarily radial, and were fairly linear. The majority of cracks were located in the midradius region...
Abstract
An A-470 steel rotor disk was removed from the high-pressure portion of a steam turbine-powered compressor after nondestructive testing revealed cracks in the shoulder of the disk during a scheduled outage. Samples containing cracks were examined using various methods. Multiple cracks, primarily intergranular were found on the inlet and outlet faces along prior-austenite grain boundaries. The cracks initiated at the surface and propagated inward. Multiple crack branching was observed. Many of the cracks were filled with iron oxide. X-ray photoelectron spectroscopy indicated the presence of sodium on crack surfaces, which is indicative of NaOH-induced stress-corrosion cracking. Failure was attributed to superheater problems that resulted in caustic carryover from the boiler. Two options for disk repair, installing a shrink-fit disk or applying weld buildup, were recommended. Weld repair was chosen, and the rotor was returned to service; it has performed for more than 1 year without further incident.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001316
EISBN: 978-1-62708-215-0
... Vanadium <0.01 <0.01 <0.01 Niobium … <0.01 <0.01 Boron … <0.0005 <0.0005 Titanium <0.03 <0.03 <0.03 Fig. 10 Longitudinal cross section through separator 1 180° from the area shown in Fig. 9 . Note the equiaxed ferrite grain structure. Nital...
Abstract
Three 1006 carbon steels team/water separators failed in a boiler in installation after several years of service. Annual inspection had revealed no evidence of deterioration until the last inspection, when they were removed from service. Metallurgical investigation determined that the separators had deteriorated because of erosion corrosion. Further analysis of the boiler operation revealed that operational changes made in the last year of service caused an increase in velocity of the water/steam mixture. It was recommended that the operating parameters for the boiler be reevaluated and prior levels of operation be reinstituted.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001403
EISBN: 978-1-62708-220-4
... on the external side. Spectrographic analysis showed the composition of the material to the approximately as follows: Per cent Chromium 18.6 Nickel 9.3 Molybdenum 2.3 Silicon 0.9 Manganese 1.0 Vanadium Trace Titanium Trace Columbium Nil These figures indicate...
Abstract
A process vessel heating coil, consisting of several 3 ft diam turns, was supplied with steam at 400 psi and a temperature of 343 deg C (650 deg F). At bi-weekly intervals well water was introduced to effect rapid cooling of the contents. After about eight months, leakage developed from a circumferential crack on the underside of the uppermost turn. Shorter cracks were found at a similar location on the bottom turn, and further leakage occurred at pinhole perforations adjacent to the crack in the top turn and near to a butt-weld in the coil. Microscopic examination revealed that the cracks were predominantly of the intergranular variety. In addition, transgranular cracks were present. Material was an austenitic stainless steel of the type specified but the absence of columbium and titanium in significant amounts showed that it was not stabilized against intergranular carbide precipitation. The transgranular cracks indicated that failure was due partly to stress-corrosion. It was concluded that the chlorides provided the main corrodent for both the stress and intercrystalline-corrosion cracking.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001100
EISBN: 978-1-62708-214-3
... Nickel 0.13 0.14 0.12 Chromium 0.21 0.21 0.20 Molybdenum 0.067 0.069 0.065 Titanium <0.01 <0.01 <0.01 Aluminum <0.005 <0.005 <0.005 Nitrogen 0.013 0.014 0.013 Boron 0.0005 0.0005 0.0005 Tungsten <0.10 <0.10 <0.10 Vanadium 0.040...
Abstract
Galvanized A36 steel unsleeved shear-type anchor bolts failed during installation. The galvanized steel bolts were approximately 18 mm (0.7 in.) in diameter with a 90 deg bend between the long and short legs. As-fractured, sawcut, and unfractured specimens were examined. Failure analysis revealed dark thumbnail regions at the fracture origins and a very narrow and uniform shear lip. The thumbnail region exhibited zinc deposits with no apparent fracture detail, indicating preexisting cracks that had occurred before galvanizing. The balance of the fracture exhibited a transgranular mode with cleavage and ductile, dimpled shear. Hardness values as high as 35 HRC were measured in the bend area. The as-galvanized bolts fractured in a brittle manner. Failure was attributed to improper bending of the bolts, which provided a severely cold-worked bend area susceptible to strain-age embrittlement.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
..., molybdenum, copper, vanadium, and boron. The decrease in hardness as a function of depth depends primarily upon the combined effects of these alloying elements. Most other common steel alloying elements have a minimal effect on hardenability. Generally, hardenability is directly proportional to elemental...
Abstract
Hardenability evaluation is typically applied to heat treatment process control, but can also augment standard metallurgical failure analysis techniques for steel components. A comprehensive understanding of steel hardenability is an essential complement to the skills of the metallurgical failure analyst. The empirical information supplied by hardenability analysis can provide additional processing and service insight to the investigator. The intent of this paper is to describe some applications of steel thermal response concepts in failure analysis, and several case studies are included to illustrate these applications.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001102
EISBN: 978-1-62708-214-3
...–0.35 0.2014 Copper NR 0.0550 Nickel NR 0.0375 Chromium 0.75–1.20 0.9595 Molybdenum 0.15–0.25 0.1270 Tin NR 0.0057 Aluminum NR 0.0239 Vanadium NR 0.0012 Titanium NR 0.0032 (a) NR, no requirement Fig. 6 SEM micrograph of a fracture surface...
Abstract
Four cadmium-plated ASTM A193 grade B studs from a steam line connector associated with a power turbine failed unexpectedly in a nil-ductility manner. Fracture surfaces were covered with a light-colored, lustrous deposit. Optical microscope, SEM, and EDS analyses were conducted on sections from one of the studs and revealed that the coating on the fracture surface was cadmium. The fracture had multiple origins, and secondary cracks also contained cadmium. The fracture topography was intergranular. The failures were attributed to liquid metal embrittlement caused by the presence of a cadmium plating and operating temperatures at approximately the melting point of cadmium. It was recommended that components exposed to the cadmium be replaced.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001122
EISBN: 978-1-62708-214-3
... Sulfur 0.035 0.00–0.05 0.00–0.05 Silicon 0.13 0.10–0.30 … Copper 0.020 … … Tin 0.002 … … Nickel 0.007 … … Chromium 0.036 … … Molybdenum 0.001 … … Aluminum 0.014 … … Vanadium <0.001 … … Niobium <0.001 … … Zirconium <0.001...
Abstract
A sledge hammer chipped during use. The chip struck a by stander in the eye, leading to its loss. The hammerhead surface was examined visually, nondestructively (magnetic particle method), and stereo microscopically, and a microstructural analysis of a cross section of the head was conducted using optical microscope. Chemical composition of the hammerhead was determined by emission spectrometry. The chemical compositions of the chip and hammer head were compared using energy-dispersive analysis. Microhardness versus distance from the striking face was also determined. The hammerhead material was UNS G10800 (AISI/SAE grade 1080). Excessive hardnesses were measured in the first 3 mm (0. 12 in.) below the striking surface, indicating that there was lack of control during the final tempering operation.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001810
EISBN: 978-1-62708-241-9
... calculation torsion fatigue strength 50CrV4 (chromium-vanadium alloy steel, EN10132-4) UNS G61500 ...
Abstract
Several torsion bars had failed in a projectile weaving machine and were analyzed to determine the cause. Specimens prepared from the damaged components were subjected to visual inspection, hardness testing, chemical analysis, and metallurgical evaluations. The failed torsion bars had been fabricated from spring steel which, according to stress calculations, did not have sufficient torsional strength. Examination of the damaged parts confirmed the finding, revealing that all fractures started at a shoulder radius in an area of high stress concentration. Based on the investigation, the shoulder radius should be increased to alleviate stress and the working torsion angle of the bar should be decreased to improve safety factors.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048795
EISBN: 978-1-62708-220-4
... length, and had an outside diameter of 2.0 m (6 ft, 6 3 4 in.). It was fabricated from ten manganese-chromium-nickel-molybdenum-vanadium steel plates 150 mm (5 7 8 in.) thick, which were rolled and welded to form ten cylindrical shell sections and three forgings of similar composition...
Abstract
A large pressure vessel designed for use in an ammonia plant failed during hydrostatic testing. It was fabricated from ten Mn-Cr-Ni-Mo-V steel plates which were rolled and welded to form ten cylindrical shell sections and three forgings of similar composition. The fracture surfaces were metallographically examined to be typical for brittle steel fracture and associated with the circumferential weld that joined the flange forging to the first shell section. Featureless facets in the HAZ were observed and were revealed to be the fracture-initiation sites. Pronounced banding in the structure of the flange forging was revealed by examination. A greater susceptibility to cracking was interpreted from the higher hardenability found within the bands. Stress relief was concluded to have not been performed at the specified temperature level (by hardness and impact tests) which caused the formation of hard spots. The mode of crack propagation was established by microstructural examination to be transgranular cleavage. It was concluded that failure of the pressure vessel stemmed from the formation of transverse fabrication cracks in the HAZ fostered by the presence of hard spots. It was recommended that normalizing and tempering temperatures be modified and a revised forging practice explored.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001804
EISBN: 978-1-62708-241-9
... , Standard Specifications for Unalloyed Titanium for Surgical Implant Applications ( ASTM , West Conshohocken , 1989 ) 10.17226/1359 10. ASTM F136-02 , Standard Specification for Wrought Titanium-6 Aluminum—4 Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS...
Abstract
A stainless steel screw securing an orthopedic implant fractured and was analyzed to determine the cause. Investigators used optical and scanning electron microscopy to examine the fracture surfaces and the microstructure of the austenitic stainless steel from which the screw was made. The results of the study indicated that the screw failed due to fatigue fracture stemming from surface cracks generated by stress concentration likely caused by grooves left by improper machining.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001005
EISBN: 978-1-62708-215-0
... 0.15 … Phosphorus 0.008 0.035 max Sulfur 0.023 0.040 max Vanadium 0.004 … Copper 0.17 … Aluminum 0.018 … Fig. 6 Weibull analysis of the depth of forged-in oxide scale Fig. 7 Statistical frequency distribution of the depth of forged-in oxide scale...
Abstract
Several heavy truck Cr-Mo steel steering arms in service less than three years fractured during stationary or low-speed turning maneuvers that required power-assisted steering. Metallographic examination of the cracked AISI 4135 arms, heat treated to a hardness of 285 to 341 HB, revealed that fatigue crack initiation occurred from the tip of oxide scale inclusions forged into the U-shaped arm at the inside radius. Corrective action involved redesigning the steering arm to increase the minimum forging radius and reduce the stress level at the inner-bend radius, and reducing the level of power assistance to the wheels to encourage the driver to put the vehicle in motion prior to turning.
1