Skip Nav Destination
Close Modal
Search Results for
M2
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-17 of 17 Search Results for
M2
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in Biologically Induced Corrosion and Consequent Fracture of a Pump Shaft Coupling
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 20 Micrograph M2 ( Fig. 16 ); microstructure at location of corrosive attack at cylindrical surface of coupling. Unetched. 200 ×
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001319
EISBN: 978-1-62708-215-0
... from 70 to 80%, and an atmospheric NaCl content ranging from 8 to 45 mg/m2 /day. Recommendations preventing further occurrence of the situation were strict avoidance of the use of carbon steel handling implements, strict avoidance of cleaning practices that cause long-term exposure to chlorine...
Abstract
Several type 304L stainless steel dished ends used in the fabrication of cylindrical vessels developed extensive cracking during storage. All of the dished ends had been procured from a single manufacturer and belonged to the same batch. When examined visually, several rust marks were observed, indicating contamination by rusted carbon steel particles. Liquid penetrant testing was used to determine the extent of the cracks, and in situ metallographic analysis was performed over the cracked region. The morphology of the cracks was indicative of transgranular stress-corrosion cracking (TGSCC). Conditions promoting the occurrence of the TGSCC included significant tensile stresses on the inside of the dished ends, the presence of surface contamination by iron due to poor handling practice using carbon steel implements, and storage in a coastal environment with an average temperature of 25 to 32 deg C (77 to 90 deg F), an average humidity ranging from 70 to 80%, and an atmospheric NaCl content ranging from 8 to 45 mg/m2 /day. Recommendations preventing further occurrence of the situation were strict avoidance of the use of carbon steel handling implements, strict avoidance of cleaning practices that cause long-term exposure to chlorine-containing cleaning fluid, and solution annealing of the dished ends at 1050 deg C (1920 deg F) for 1 h followed by water quenching to relieve residual stresses.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001269
EISBN: 978-1-62708-215-0
... on the surface. Sample after gold sputter coating. 500×. Fig. 1 Overall view of titanium nitride-coated hob. Approximately.1× Fig. 2 Closer view of fractured cutting edges. Approximately 5×. Abstract Recurring, premature failures occurred in TiN-coated M2 gear hobs used to produce...
Abstract
Recurring, premature failures occurred in TiN-coated M2 gear hobs used to produce carbon steel ring gears. Fractographic and metallographic examination, microhardness testing, and chemical analysis by means of EDS revealed that the primary cause of failure was a coarse cellular carbide network, which created a brittle path for fracture to occur longitudinally. As the cellular carbide network must be dispersed and refined during hot working of the original bar of material, the hobs were not salvageable. Minor factors contributing to the hob failures were premature wear resulting from lower matrix hardness and high sulfur content of the material, which contributed to lower ductility through increased nucleation sites. It was recommended that the hob manufacturer specify a minimum amount of required reduction for the original bar of tool steel material, to provide for sufficient homogenization of the carbides in the resultant hob, and lower sulfur content.
Image
in Biologically Induced Corrosion and Consequent Fracture of a Pump Shaft Coupling
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 16 Specimen removed from fractured coupling showing corrosive attack at top and at cylindrical surface. Longitudinal cut. M1 and M2, locations of optical micrographs ( Fig. 19 , 20 ); S1, location of SEM micrograph ( Fig. 21 )
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001648
EISBN: 978-1-62708-234-1
... and the cylindrical surface of the coupling. The extent of penetration on all surfaces examined was substantial. Fig. 16 Specimen removed from fractured coupling showing corrosive attack at top and at cylindrical surface. Longitudinal cut. M1 and M2, locations of optical micrographs ( Fig. 19 , 20 ); S1...
Abstract
During a routine start-up exercise of a standby service water pump, a threaded coupling that joined sections of a 41.5 ft (12.7 m) long pump shaft experienced fracture. The pump was taken out of service and examined to determine the cause of fracture. It was apparent early in the examination that the fracture involved hydrogen stress cracking. However, the nature of the corrosive attack suggested an interaction between the threaded coupling and biological organisms living in the freshwater environment of the pump shaft. The organisms had colonized on the coupling, changing the local environment and creating conditions favorable to hydrogen stress cracking. This paper describes the analysis of the fracture of the coupling and provides an example of how biologically induced corrosion can result in unexpected fracture of a relatively basic machine part.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
... was negligible compared to what should have been present. Etched with 3% nital. 700× Figure 17(a) shows an AISI M2 roughing tool that cracked during hardening (the cracks were accentuated with magnetic particles). Microstructural examination revealed an overaustenitized condition with a heavy grain...
Abstract
This article describes the characteristics of tools and dies and the causes of their failures. It discusses the failure mechanisms in tool and die materials that are important to nearly all manufacturing processes, but is primarily devoted to failures of tool steels used in cold-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps, unconsolidated interiors, and carbide segregation and poor carbide morphology are reviewed with illustrations.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006818
EISBN: 978-1-62708-329-4
...) and coarse plate martensite (dark) can be seen. The amount of residual carbide was negligible compared to what should have been present. Etched with 3% nital. Original magnification: 700× Figure 17(a) shows an AISI M2 roughing tool that cracked during hardening (the cracks were accentuated...
Abstract
This article discusses failure mechanisms in tool and die materials that are very important to nearly all manufacturing processes. It is primarily devoted to failures of tool steels used in cold working and hot working applications. The processes involved in the analysis of tool and die failures are also covered. In addition, the article focuses on a number of factors that are responsible for tool and die failures, including mechanical design, grade selection, steel quality, machining processes, heat treatment operation, and tool and die setup.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
Abstract
This article describes the general aspects of creep, stress relaxation, and yielding for homogeneous polymers. It then presents creep failure mechanisms in polymers. The article discusses extrapolative methods for the prediction of long-term creep failure in polymer materials. Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). The Larson-Miller parametric method, one of the most common to describe the material deformation and rupture time, is also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... temperature of the lubricant, which is 205 to 230 °C (400 to 450 °F) for the synthetic lubricants that are widely used at elevated temperatures. Molybdenum high-speed tool steels, such as M1, M2, and M10, are suitable for use to about 425 °C (800 °F) in oxidizing environments. Grades M1 and M2 maintain...
Abstract
Rolling-element bearings use rolling elements interposed between two raceways, and relative motion is permitted by the rotation of these elements. This article presents an overview of bearing materials, bearing-load ratings, and an examination of failed bearings. Rolling-element bearings are designed on the principle of rolling contact rather than sliding contact; frictional effects, although low, are not negligible, and lubrication is essential. The article lists the typical characteristics and causes of several types of failures. It describes failure by wear, failure by fretting, failure by corrosion, failure by plastic flow, failure by rolling-contact fatigue, and failure by damage. The article discusses the effects of fabrication practices, heat treatment and hardness of bearing components, and lubrication of rolling-element bearings with a few examples.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
... stains (arrows on the aluminum specimen). Fig. 14 Light micrograph showing stain (arrows pointing up) from the etchant (Vilella's reagent) that seeped from the shrinkage gap (wide arrows pointing down) between the phenolic resin mount and the specimen of M2 high-speed steel An advantage...
Abstract
This article provides a discussion on the metallographic techniques used for failure analysis, and on fracture examination in materials, with illustrations. It discusses various metallographic specimen preparation techniques, namely, sectioning, mounting, grinding, polishing, and electrolytic polishing. The article also describes the microstructure examination of various materials, with emphasis on failure analysis, and concludes with information on the examination of replicas with light microscopy.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... and the specimen of M2 high-speed steel An advantage of compression mounting is production of a mount of a predictable, convenient size and shape. Further, considerable information can be engraved on the backside of the mount—this is always more difficult with unmounted specimens. Manual (hand) polishing...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006792
EISBN: 978-1-62708-295-2
Abstract
Rolling-contact fatigue (RCF) is a common failure mode in components subjected to rolling or rolling-sliding contact. This article provides a basic understanding of RCF and a broad overview of materials and manufacturing techniques commonly used in industry to improve component life. A brief discussion on coatings to improve surface-initiated fatigue and wear is included, due to the similarity to RCF and the increasing criticality of this failure mode. The article presents a working knowledge of Hertzian contact theory, describes the life prediction of rolling-element bearings, and provides information on physics and testing of rolling-contact fatigue. Processes commonly used to produce bearings for demanding applications are also covered.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
...) for the synthetic lubricants that are widely used at elevated temperatures. Molybdenum high-speed tool steels, such as M1, M2, and M10, are suitable for use to approximately 425 °C (800 °F) in oxidizing environments. Grades M1 and M2 maintain satisfactory hardnesses to approximately 480 °C (900 °F...
Abstract
This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006930
EISBN: 978-1-62708-395-9
Abstract
Rheology is defined as the study of the flow and deformation of matter. This article begins with an examination of flow behavior. It describes the geometries and methods employed for rheological testing of polymers in their molten state. It also discusses materials that are predominantly in the solid state and the methods employed for solids testing. Examples of unidirectional and dynamic oscillatory testing are provided for different mechanical behaviors.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
Abstract
This article discusses the most common thermal analysis methods for thermosetting resins. These include differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. The article also discusses the characterization of uncured thermosetting resins as well as the curing process. Then, the techniques to characterize the physical properties of cured thermosets and composites are presented. Several examples of stress-strain curves are shown for thermosets and thermoplastic polymers.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9