Skip Nav Destination
Close Modal
By
Iván Uribe Pérez, Tito Luiz da Silveira, Tito Fernando da Silveira, Heloisa Cunha Furtado
Search Results for
Low-alloy steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 503 Search Results for
Low-alloy steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0089534
EISBN: 978-1-62708-223-5
... Abstract The specially designed sand-cast low-alloy steel jaws that were implemented to stretch the wire used in prestressed concrete beams fractured. The fractures were found to be macroscale brittle and exhibited very little evidence of deformation. The surface of the jaws was disclosed...
Abstract
The specially designed sand-cast low-alloy steel jaws that were implemented to stretch the wire used in prestressed concrete beams fractured. The fractures were found to be macroscale brittle and exhibited very little evidence of deformation. The surface of the jaws was disclosed by metallographic examination to be case carburized. The case was found to be martensite with small spheroidal carbides while the core consisted of martensite plus some ferrite. The fracture was revealed to be related to shrinkage porosity. Tempering was revealed to be probably limited to about 150 deg C by the hardness values (close to the maximum hardness values attainable) for the core. It was interpreted that the low tempering temperature used may have contributed to the brittleness. The procedures used for casting the jaws were recommended to be revised to eliminate the internal shrinkage porosity. Tempering at a slightly higher temperature to reduce surface and core hardness was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001813
EISBN: 978-1-62708-241-9
... Abstract Graphitization, the formation of graphite nodules in carbon and low alloy steels, contributes to many failures in high-temperature environments. Three such failures in power-generating systems were analyzed to demonstrate the unpredictable nature of this failure mechanism and its...
Abstract
Graphitization, the formation of graphite nodules in carbon and low alloy steels, contributes to many failures in high-temperature environments. Three such failures in power-generating systems were analyzed to demonstrate the unpredictable nature of this failure mechanism and its effect on material properties and structures. In general, the more randomly distributed the nodules, the less effect they have on structural integrity. In the cases examined, the nodules were found to be organized in planar arrays, indicating they might have an effect on material properties. Closer inspection, however, revealed that the magnitude of the effect depends on the relative orientation of the planar arrangement and principle tensile stress. For normal orientation, the effect of embrittlement tends to be most severe. Conversely, when the orientation is parallel, the nodules have little or no effect. The cases examined show that knowledge is incomplete in regard to graphitization, and the prediction of its occurrence is not yet possible.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0089530
EISBN: 978-1-62708-219-8
... Abstract A sand-cast steel eye connector used to link together two 54,430 kg capacity floating-bridge pontoons failed prematurely in service. The pontoons were coupled by upper and lower eye and clevis connectors that were pinned together. The eye connector was found to be cast from low-alloy...
Abstract
A sand-cast steel eye connector used to link together two 54,430 kg capacity floating-bridge pontoons failed prematurely in service. The pontoons were coupled by upper and lower eye and clevis connectors that were pinned together. The eye connector was found to be cast from low-alloy steel conforming to ASTM A 148, grade 150-125. The crack was found to have originated along the lower surface initially penetrating a region of shrinkage porosity. It was observed that cracking then propagated in tension through sound metal and terminated in a shear lip at the top of the eye. The fracture of the eye connector was concluded to have occurred by tensile overload because of shrinkage porosity. Sound metal was ensured by radiographic examination of subsequent castings.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047939
EISBN: 978-1-62708-225-9
... Abstract Rough operation of the roller bearing mounted in an electric motor/gearbox assembly was observed. The bearing components made of low-alloy steel (4620 or 8620) and the cup, cone and rollers were carburized, hardened and tempered. The contact surfaces of these components (cup, cone...
Abstract
Rough operation of the roller bearing mounted in an electric motor/gearbox assembly was observed. The bearing components made of low-alloy steel (4620 or 8620) and the cup, cone and rollers were carburized, hardened and tempered. The contact surfaces of these components (cup, cone and roller) were revealed to be uniformly electrolytically etched by visual examination. The action similar to anodic etching was believed to have occurred as a result of stray currents in the electric motor (not properly grounded) and the presence of an electrolyte (moisture) between the cup and roller surfaces of the bearing. As a remedial action, the bearing was insulated for protection from stray currents by grounding of the motor and the moisture was kept out by sealing both bearings in the assembly.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001337
EISBN: 978-1-62708-215-0
... examined. It was concluded that preferential nucleations of graphite nodules in a series of bands weakened the steel locally, producing preferred fracture paths. Formation of these graphite bands probably expedited the creep failure of the tube. Future failures may be avoided by using low-alloy steels...
Abstract
A carbon-molybdenum (ASTM A209 Grade T1) steel superheater tube section in an 8.6 MPa (1250 psig) boiler cracked because of long-term overheating damage that resulted from prolonged exposure to metal temperatures between 482 deg C (900 deg F) and 551 deg C (1025 deg F). The outer diameter of the tube exhibited a crack (fissure) oriented approximately 45 deg to the longitudinal axis and 3.8 cm (1.5 in.) long. The inner diameter surface showed a fissure in the same location and orientation. Microstructure at the failure near the outer diameter surface exhibited evidence of creep cracking and creep void formation at the fissure. A nearly continuous band of graphite nodules was observed on the surface of the fissure. In addition to the graphite band formation, the microstructure near the failure exhibited carbide spheroidization from long-term overheating in all the tube regions examined. It was concluded that preferential nucleations of graphite nodules in a series of bands weakened the steel locally, producing preferred fracture paths. Formation of these graphite bands probably expedited the creep failure of the tube. Future failures may be avoided by using low-alloy steels with chromium additions such as ASTM A213 Grade T11 or T22, which are resistant to graphitization damage.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001072
EISBN: 978-1-62708-214-3
Abstract
Radial cracking occurred adjacent to 11 vanes in a 19-vane impeller operating in a chemical plant environment. The impeller vanes were fillet welded to both the disk and the cover Cracks were next to the fillet welds and near the cover outer diameter They generally did not extend to the outer diameter. The entire impeller surface was tested by the dry magnetic particle method. Visual and microstructural examinations revealed intergranular cracking. Energy-dispersive spectroscopy of corrosion products contained in the cracks disclosed the presence of chlorine and sulfur The failure was attributed to stress-corrosion cracking caused by a corrosive atmosphere.
Image
Published: 01 January 2002
Fig. 3 Service failure of a low-alloy steel nut by LMIE. Cadmium-plated, 4140 low-alloy steel (44 HRC) nuts were inadvertently used on bolts for clamps used to join ducts that carried hot (500 °C, or 930 °F) air from the compressor of a military jet engine. (a) The nuts were fragmented
More
Image
Published: 01 January 2002
Fig. 9 Brittle (a) and ductile (b) crack paths in fractured low alloy steel specimens (both electroless nickel-plated for edge preservation and etched with 2% nital).
More
Image
Published: 01 January 2002
Fig. 4 Sand-cast low-alloy steel eye connector from a floating-bridge pontoon that broke under static tensile loading. (a) Schematic illustration of pontoon bridge and enlarged view of eye and clevis connectors showing location of fracture in eye connector. (b) A fracture surface of the eye
More
Image
Published: 01 January 2002
Fig. 20 Highway-truck equalizer beam, sand cast from low-alloy steel, that fractured because of mechanical cracking. (a) Fracture surface; detail A shows increments (regions B, C, D, and E) in which crack propagation occurred sequentially. Dimensions given in inches. (b) Micrograph
More
Image
Published: 01 January 2002
Fig. 45 Low-alloy steel conveyor pipe that cracked at fillet welds securing a carbon steel flange because of poor fit-up. Dimensions given in inches
More
Image
Published: 01 January 2002
Fig. 5 Comparison of wear surfaces for low-alloy steel specimens worn in (a) flow-through and (b) recycled slurry tests for 1 h and 1.67 h, respectively. Source: Ref 13
More
Image
Published: 01 January 2002
Fig. 7 Low-alloy steel roller bearing from an improperly grounded electric motor that was pitted and etched by electrolytic action of stray electric currents in the presence of moisture.
More
Image
Published: 01 January 2002
Fig. 14 Fatigue failure of a low-alloy steel part. Shear lips around most of the periphery (as at arrows) as well as chevron marks over most of the fracture surface aid in identifying the fatigue fracture area at the lower left corner. Source: Ref 15
More
Image
Published: 01 January 2002
Fig. 16 Mechanical properties of quenched and tempered low-alloy steel (0.30–0.50 wt% C) as determined by Patton. Source: Ref 11
More
Image
Published: 01 January 2002
Fig. 17 Mechanical properties of quenched and tempered low-alloy steel (0.30–0.45 wt% C) as determined by Janitsky and Baeyertz. Source: Ref 12
More
Image
Published: 15 January 2021
Fig. 53 Fatigue striations in a vanadium high-strength, low-alloy steel. (a) Longitudinal-transverse orientation; stress-intensity range (Δ K ) = 32.3 to 34.3 M P a m (29.4 to 31.2 ksi in .); and fatigue crack growth rate ( da / dN ) = 3.3 to 3.8 × 10 −5 cm/cycle. (b
More
Image
Published: 15 January 2021
Fig. 14 Fatigue failure of a low-alloy steel part. Shear lips around most of the periphery (as at arrows) as well as radial marks over most of the fracture surface aid in identifying the fatigue fracture area at the lower left corner. Source: Ref 15
More
Image
Published: 15 January 2021
Fig. 4 Service failure of a low-alloy steel nut by liquid-metal-induced embrittlement (LMIE). Cadmium-plated, 4140 low-alloy steel (44 HRC) nuts were inadvertently used on bolts for clamps used to join ducts that carried hot (500 °C, or 930 °F) air from the compressor of a military jet engine
More
Image
in Failure of a Low-Alloy Steel Bearing in an Electric Motor Because of Stray Electric Currents
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 1 Low-alloy steel roller bearing from an improperly grounded electric motor that was pitted and etched by electrolytic action of stray electric currents in the presence of moisture.
More
1