Skip Nav Destination
Close Modal
Search Results for
Loads (forces)
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 338 Search Results for
Loads (forces)
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 15 May 2022
Fig. 36 Loading-rate dependence of fracture toughness. FBA, force-based analysis; DKC, dynamic key curve; POM, polyoxymethylene
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047312
EISBN: 978-1-62708-224-2
... 5900 kg (13,000 lb), the observations made in this investigation suggested that either the load was underestimated or that the indicated load was applied at a more rapid rate (perhaps with a jerk), which would tend to increase the effective force of the load. Castings T hooks 60-40-18 UNS...
Abstract
A ductile iron T-hook hook was reported to have fractured in service. It was further reported that the hook had been subjected to a load that did not exceed 5900 kg (13,000 lb) at the time of fracture. No information was provided regarding the type of metal used to manufacture the hook. A failure analysis was requested to determine the cause of fracture. Two hooks were submitted for examination. Analysis (visual inspection, 2.7x light fractography, chemical analysis, 110x SEM fractography, 27x/110x/215x nital-etched micrographs) supported the conclusions that this component fractured in service as a consequence of ductile tensile overload. Evidence indicates that the fractured region was subjected to a load exceeding the capacity of the material. Because the information available from the service application indicated that the component had not been subjected to a stress that exceeded 5900 kg (13,000 lb), the observations made in this investigation suggested that either the load was underestimated or that the indicated load was applied at a more rapid rate (perhaps with a jerk), which would tend to increase the effective force of the load.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001018
EISBN: 978-1-62708-217-4
..., probably accentuated by looseness in the clamping device. The resulting residual tensile stress lowered the effective fatigue strength at that point against drag and side loads. Aircraft components Brinelling Clamping Landing gear Loads (forces) 6150 UNS G61500 Fatigue fracture So many...
Abstract
Initial investigation showed that a landing gear failure was the result of a hard landing with no evidence of contributory factors. The objective of reexamination was to determine whether there was any evidence of metallurgical failure. The landing gear was primarily an AISI type 6150 Cr-V steel flat spring attached at the top end to the fuselage and at the bottom end to the axle. Failure occurred at the clamping point near the top end of this spring. The failure showed evidence of severe brinelling at one corner in the clamping area. The fracture surfaces were clean, fresh, and indicative of a shock type of failure pattern. Closer examination, however, showed a fatigue crack at one corner. At this point, there was definite evidence of progression and oxidation. It was concluded that the corner in question was subjected to repeated brinelling resulting from normal landing loads, probably accentuated by looseness in the clamping device. The resulting residual tensile stress lowered the effective fatigue strength at that point against drag and side loads.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048410
EISBN: 978-1-62708-226-6
... by the beach marks which indicated the action of asymmetric bending and rotational forces. Loads (forces) Nonmetallic inclusions Slags Surgical implants Torsion 316 UNS S31600 Fatigue fracture A narrow bone plate was used to stabilize an open midshaft femur fracture in an 18 year old patient...
Abstract
A narrow bone plate made of type 316 stainless steel and used to stabilize an open midshaft femur fracture failed. A crack at a plate hole next to the fracture site had been revealed by a radiograph taken 13 weeks after the operation. The plate was revealed to be slightly bent in the horizontal plane, and the fracture gap was considerably open. The screws and plates supplied by different manufacturers were revealed to be different with respect to microcleanliness (primary inclusion content) of the materials and only one of them was found to be according to specifications. The local crack formation was influenced by the presence of larger inclusions. The screw failed was revealed to have failed through a fatigue mechanism by the presence of striations in the scanning electron micrograph. The crack in the plate was revealed to have originated at the upper, outer corner of the plate by the beach marks which indicated the action of asymmetric bending and rotational forces.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048043
EISBN: 978-1-62708-224-2
... was recommended instead of roll swaging as they made deformation more symmetrical. Loads (forces) Residual stress Swaging 303Se UNS S30323 Stress-corrosion cracking An eye terminal made of AISI type 303(Se) stainless steel that was roll swaged on the end of a 9.5-mm ( 3 8 -in.) diam wire...
Abstract
An AISI type 303(Se) stainless steel eye terminal that was roll swaged on the end of a 9.5 mm diam wire rope cracked extensively after one year of service. A hairline crack that had initiated at the inner surface of the fitting was revealed by metallographic examination of a sectioned terminal specimen. It was indicated by the holes in the region adjoining the crack and rough texture of the crack surface that a corrosive medium (presumably seawater) had entered the crack from the inner surface of the fitting and coupled with the hairline crack to develop crevice corrosion. The crack propagated toward the outer surface due to high residual stresses in the swaged metal and was followed closely by corrosion. Stress corrosion as result of a combination of residual stresses plus load stress and corrosion was found to cause the failure. Rotary swaging or swaging in a punch press was recommended instead of roll swaging as they made deformation more symmetrical.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001487
EISBN: 978-1-62708-234-1
... to distortion of the end windings. The trouble results from the high loading which develops between successive layers of the strip conductor due to centrifugal force; this leads to a high frictional binding force between turns and prevents axial expansion under normal heating in service. As a result...
Abstract
Copper shortening has been found to occur in the rotor windings of turbo alternators and takes the form of a progressive reduction in the length of the coils leading to distortion of the end windings. The trouble results from the high loading which develops between successive layers of the strip conductor due to centrifugal force. This leads to a high frictional binding force between turns and prevents axial expansion under normal heating in service. Rotor trouble which proved to be due to copper shortening was found in a set rated at 27.5 MW. It was manufactured in 1934 at which time silver-bearing copper was not available. The use of hard-drawn silver-bearing copper for a rewind, in conjunction with special attention to blocking up the end windings, is confidently expected to effect a complete cure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001741
EISBN: 978-1-62708-234-1
... was designed to handle soft lignite coals but had been used to crush hard deep-mined anthracite coals. Anthracite Crushers Lignite Loads (forces) Taper roller bearings Carburized steel Rolling-contact wear Metallographic evidence of microstructural features in the shape of ‘butterflies’ ( Fig...
Abstract
Butterfly-shaped microstructural features in tempered martensite in an otherwise clean steel suggested that overloading led to premature spalling of a coal-crushing plant taper bearing. Extensive rolling contact fatigue occurred because of the overload condition. The crusher was designed to handle soft lignite coals but had been used to crush hard deep-mined anthracite coals.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047846
EISBN: 978-1-62708-218-1
... loading. It was revealed by visual examination that the fracture had initiated in the sharp corner at the bottom of a longitudinal hole which was part of a force feed lubricating system. Beach marks were observed on the fracture surfaces. It was revealed by further examination that the slip clutch...
Abstract
An 8640 steel shaft installed in a fuel-injection-pump governor that controlled the speed of a diesel engine used in trucks and tractors broke after few days of operation. The mechanism that drove the shaft was designed to include a slip clutch to protect the governor shaft from shock loading. It was revealed by visual examination that the fracture had initiated in the sharp corner at the bottom of a longitudinal hole which was part of a force feed lubricating system. Beach marks were observed on the fracture surfaces. It was revealed by further examination that the slip clutch was removed in an effort to reduce cost and hence the shaft was subjected to increased vibration and shock loading. Insufficient fatigue limit of the shaft was revealed by fatigue testing of the shafts taken from stock in a rotating-beam machine. As a corrective measure, the fatigue limit of shafts was increased to 760 MPA by nitriding for 10 h at 515 deg C.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048095
EISBN: 978-1-62708-224-2
... Abstract The T-section cross member of the lifting sling failed in service while lifting a 966 kg (2130 lb) load. The L-section sling body and the cross member were made of aluminum alloy 5083 or 5086 and were joined by welding using aluminum alloy 4043 filler metal. The fracture was found...
Abstract
The T-section cross member of the lifting sling failed in service while lifting a 966 kg (2130 lb) load. The L-section sling body and the cross member were made of aluminum alloy 5083 or 5086 and were joined by welding using aluminum alloy 4043 filler metal. The fracture was found by visual examination to have occurred at the weld joining the sling body and the cross member. Inadequate joint penetration and porosity was revealed by macrographic examination of the weld. Lower silicon content and a higher magnesium and manganese content than the normal for alloy 4043 filler metal were found during chemical analysis. It was revealed by examination of the ends of the failed cross member that a rotational force that had been applied on the cross member caused it to fracture near the sling body. It was concluded that brittle fracture at the weld was caused by overloading which was attributed to the misalignment of the sling during loading. Aluminum alloy 5183 or 5356 filler metal was recommended to be used to avoid brittle welds.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001499
EISBN: 978-1-62708-236-5
... position under a reverberating load for an extended period of time. Loads (forces) Reflection Spur gears Vibration 8622 UNS G86220 (Other, miscellaneous, or unspecified) wear Three spur gears that had formed a straight-line train in a speed reducer were brought in for examination...
Abstract
Three spur gears made from 8622 Ni-Cr-Mo alloy steel formed a straight-line train in a speed reducer on a rail-mounted overslung lumber carrier. The gears were submitted for nondestructive examination and evaluation, with no accompanying information or report. Two teeth on one of the gears were found to be pitted, one low on profile and the adjacent tooth high on profile. The mating gear had a similar characteristic, two adjacent teeth with evidence of pitting and the same difference in profile. It was correctly deduced that the pitting occurred because the gears were in a static position under a reverberating load for an extended period of time.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047968
EISBN: 978-1-62708-225-9
... when the bearing was not rotating or during installation. It was concluded that the bearings had failed in rolling-contact fatigue. The noise was eliminated and the preload was reduced to 30 lb by using a different spring washer as a corrective measure. Computers Loads (forces) Noise Service...
Abstract
The radial-contact ball bearings (type 440C stainless steel and hardened) supporting a computer microdrum were removed for examination as they became noisy. Two sizes of bearings were used for the microdrum and a spring washer that applied a 50 lb axial load on the smaller bearing was installed in contact with the inner ring for accurate positioning of the microdrum. The particles contained in residue achieved after cleaning of the grease on bearings with a petroleum solvent were attracted by a magnet and detected under a SEM (SEM) to be flaked off particles from the outer raceway surface. Smearing, true-brinelling marks, and evidence of flaking caused by the shifting of the contact area (toward one side) under axial load, was revealed by SEM investigation of one side of the outer-ring raceway. The true-brinelling marks on the raceways were found to be caused by excessive loading when the bearing was not rotating or during installation. It was concluded that the bearings had failed in rolling-contact fatigue. The noise was eliminated and the preload was reduced to 30 lb by using a different spring washer as a corrective measure.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001021
EISBN: 978-1-62708-214-3
... in service, the Royal Australian Air Force requested that the crack growth rate during service be determined. The loading history of the aircraft was made available in the form of flight by-flight records of the counts from the vertical accelerometer sensors fitted to the airframe and a series of “overstress...
Abstract
Following the crash of a Mirage III-0 aircraft (apparently caused by engine failure), a small crack was detected in a bolt hole in the wing main spar (AU4SG aluminum alloy). Because this area was considered to be critical to aircraft safety and similar cracking was found in other spars in service, the Royal Australian Air Force requested that the crack growth rate during service be determined. The loading history of the aircraft was made available in the form of flight by-flight records of the counts from the vertical accelerometer sensors fitted to the airframe and a series of “overstress” events recorded during the life of the aircraft. The bolt hole was examined by eddy current testing, visual examination, high-powered light microscope, and scanning electron microscope. Simulation tests were also conducted. The use of simulation specimens permitted actual crack growth rate data to be determined for the configuration of interest.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001058
EISBN: 978-1-62708-214-3
... Abstract A white cast iron water-line plug in a fire sprinkler systems split during leak repair. Examination revealed no material flaws, fatigue, or excessive corrosion. The plug head exhibited signs of excessive loads used in attempts to force the plug farther into the pipe. The evidence...
Abstract
A white cast iron water-line plug in a fire sprinkler systems split during leak repair. Examination revealed no material flaws, fatigue, or excessive corrosion. The plug head exhibited signs of excessive loads used in attempts to force the plug farther into the pipe. The evidence obtained indicated that the failure resulted from human error.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001787
EISBN: 978-1-62708-241-9
... profiles) and the cumulative effect of torque and force loading (the byproduct of continuous twisting and axial impact). Cracks readily initiate under these conditions then propagate quickly through what was found to be networks of tempered martensite, thus resulting in premature failure. drill bit...
Abstract
A masonry type drill bit, designed for impact drilling in rock, fractured after a short time in service. Samples of the failed bit were analyzed using optical and scanning electron microscopy, quantitative metallography, and chemical analysis. The composition was found to be that of 18CrNi3Mo steel. Investigators also found evidence of inclusions and prior austenite grain size, although it was determined that neither played a role in the failure. Rather, according to test data, the failure occurred because of stress concentration (due to geometric discontinuities along the tooth profiles) and the cumulative effect of torque and force loading (the byproduct of continuous twisting and axial impact). Cracks readily initiate under these conditions then propagate quickly through what was found to be networks of tempered martensite, thus resulting in premature failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047352
EISBN: 978-1-62708-221-1
... induces complete failure to the load-bearing section. The premature failure of these liners was caused by severe localized overstress conditions due to localized impact in service. Proper backing of shell liners should be ensured to reduce the effect of impact forces in the ball mill. Ball mills...
Abstract
Two broken ball-mill liners from a copper-mine ore operation were submitted for failure analysis. These liners failed prematurely, having reached less than 20% of their expected life. The chemical composition of the liners was within specifications for high-chromium white cast iron. The two broken liners were sand blasted for visual inspection and subsequent metallography and hardness testing. Many cracks were found externally and on the undersides. There were also signs of mechanical damage that occurred inside the mill before detection of the failures. The underside cracking is significant because the user advised that the liners were not backed in the installation. Cracking was present in the microstructures of both liners. These cracks tend to fracture the brittle carbide phase first; once nucleated, the sharp cracks can propagate and grow to critical dimensions, which eventually induces complete failure to the load-bearing section. The premature failure of these liners was caused by severe localized overstress conditions due to localized impact in service. Proper backing of shell liners should be ensured to reduce the effect of impact forces in the ball mill.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001242
EISBN: 978-1-62708-223-5
... Abstract During dismantling of an eccentric camshaft of 340 mm diam that had worked for a total of 450,000 load reversals, it was found that it had cracked on both sides of the eccentric cam. The shaft was made of chromium-molybdenum alloy steel 34 Cr-Mo4 (Material No. 1.7220) according to DIN...
Abstract
During dismantling of an eccentric camshaft of 340 mm diam that had worked for a total of 450,000 load reversals, it was found that it had cracked on both sides of the eccentric cam. The shaft was made of chromium-molybdenum alloy steel 34 Cr-Mo4 (Material No. 1.7220) according to DIN 17200. Microstructural examination showed the shaft had ran hot, and there were no material defects. The shaft probably was overstressed by torsion forces. The presence of surface checks on both sides of the cam lobe that were filled with bearing metal proved that overstressing occurred through galling of the end faces of the bearing liners.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001366
EISBN: 978-1-62708-215-0
... analysis indicated that the fatigue loading probably had been caused by forced excitation, resulting in the impeller vibrating at its resonant frequency. It was recommended that the impeller design, control systems, and material of construction be changed. Airfoils Turbines Vanes 7075-T6 AMS 4126...
Abstract
An AMS 4126 (7075-T6) aluminum alloy impeller from a radial inflow turbine fractured during commissioning. Initial examination showed that two adjacent vanes had fractured through airfoils in the vicinity of the vane leading edges, and one vane fractured through an airfoil near the hub in the vicinity of the vane trailing edge. Some remaining vanes exhibited radial and transverse cracks in similar locations. Binocular and scanning electron microscope examinations showed that the cracks had been caused by high-cycle fatigue and had progressed from multiple origins on the vane surface. Structural analysis indicated that the fatigue loading probably had been caused by forced excitation, resulting in the impeller vibrating at its resonant frequency. It was recommended that the impeller design, control systems, and material of construction be changed.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001272
EISBN: 978-1-62708-215-0
... content (0.020%). The allowable stress based on yield was estimated using four different design criteria. Correlation among those results was poor. The different criteria indicated that the material was loaded from the maximum allowable to approximately 30% less than allowable. Nevertheless...
Abstract
A 22 m (72 ft) diameter filled grain storage bin made from a 0.2% carbon steel collapsed at a temperature of −1 to 4 deg C (30 to 40 deg F). Failure analysis indicated that fracture occurred in a two-step process: first downward, by ductile failure of small ligament from a bolt hole near the bottom of the tank to create a crack 25 mm (1 in.) long, and then upward, by brittle fracture through successive 1.2 m (4ft) wide sheets of ASTM A446 material. Site investigation showed that the concrete base pad was not level. Chemical analysis indicated that the material had a high nitrogen content (0.020%). The allowable stress based on yield was estimated using four different design criteria. Correlation among those results was poor. The different criteria indicated that the material was loaded from the maximum allowable to approximately 30% less than allowable. Nevertheless, at this stress level, fracture mechanics indicated that the 25 mm (1 in.) starter crack exceeded or was very near the critical crack length for the material. Additional factors not taken into account in the design equations included cold work from a hole punching operation, thread imprinting in bolt holes, and an additional hoop stress created by forcing an incorrectly formed panel to fit the pad base radius. These factors increased the nominal design stress to a sufficiently large value to cause the critical crack length to be exceeded.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001273
EISBN: 978-1-62708-215-0
... The most extensive cracking was observed in the rod nuts and in the portions of the rod which were covered by the nuts. Cracking was transgranular with extensive branching, and some corrosion occurred along the crack paths. The clamping force from the nuts used on both sides of the supported member...
Abstract
One-quarter inch diameter 304 stainless steel cooling tower hanger rods failed by chloride-induced stress-corrosion cracking (SCC). The rods were located in an area of the cooling tower where the air contains drop lets of water below the mist eliminators and above the flow of water The most extensive cracking was observed in the rod nuts and in the portions of the rod which were covered by the nuts. Cracking was transgranular with extensive branching, and some corrosion occurred along the crack paths. The clamping force from the nuts used on both sides of the supported member and residual stresses from thread rolling likely contributed to the stresses for the cracking mechanism, along with the stresses induced by the supported load. The external surfaces of the hanger rods were reportedly exposed to a chloride-containing atmosphere, likely due to the biocide. Type 304 stainless steel is not a suitable material for this application, and materials that resist SCC, such as Inconel, should be considered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048413
EISBN: 978-1-62708-226-6
... Abstract A type 316L stainless steel angled plate failed. The fatigue fracture was found to have occurred at a plate hole. Symmetric cyclic bending forces were revealed by the fatigue damage at the fracture edge at the top surface of the plate. Fatigue striations and slip bands produced...
Abstract
A type 316L stainless steel angled plate failed. The fatigue fracture was found to have occurred at a plate hole. Symmetric cyclic bending forces were revealed by the fatigue damage at the fracture edge at the top surface of the plate. Fatigue striations and slip bands produced on the surface during cyclic loading were observed. The material was showed by the deformation structure to be in the cold-worked condition and was termed to not be the cause of the implant failure.
1