Skip Nav Destination
Close Modal
Search Results for
Liquid metals
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 344 Search Results for
Liquid metals
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... Abstract Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid metal induced embrittlement (LMIE). It describes the unique features that assist in arriving at a clear conclusion whether SMIE or LMIE is the most probable cause of the problem. The article briefly reviews some commercial alloy systems where LMIE or SMIE has been documented. It also provides some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... Abstract Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced embrittlement. This phenomenon shares many of these characteristics with other modes of environmentally induced cracking, such as hydrogen embrittlement and stress-corrosion cracking. The discussion covers the occurrence, failure analysis, and service failures of the embrittlement. The article also briefly reviews some commercial alloy systems in which liquid-metal-induced embrittlement or solid-metal-induced embrittlement has been documented and describes some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001318
EISBN: 978-1-62708-215-0
... Intergranular fracture Mercury Rupturing Safety equipment C22000 UNS C22000 Liquid metal induced embrittlement Background Applications Commercial bronze rupture discs (C22000) are used in a safety device integral with valves used on flammable gas containing cylinders. C22000 composition limits...
Abstract
Failure of three C22000 commercial bronze rupture discs was caused by mercury embrittlement. The discs were part of flammable gas cylinder safety devices designed to fail in a ductile mode when cylinders experience higher than design pressures. The subject discs failed prematurely below design pressure in a brittle manner. Fractographic examination using SEM indicated that failure occurred intergranularly from the cylinder side. EDS analysis indicated the presence of mercury on the fracture surface and mercury was also detected using scanning auger microprobe (SAM) analysis. The mercury was accidentally introduced into the cylinders during a gas-blending operation through a contaminated blending manifold. Replacement of the contaminated manifold was recommended along with discontinued use of mercury manometers, the original source of mercury contamination.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001102
EISBN: 978-1-62708-214-3
... on sections from one of the studs and revealed that the coating on the fracture surface was cadmium. The fracture had multiple origins, and secondary cracks also contained cadmium. The fracture topography was intergranular. The failures were attributed to liquid metal embrittlement caused by the presence...
Abstract
Four cadmium-plated ASTM A193 grade B studs from a steam line connector associated with a power turbine failed unexpectedly in a nil-ductility manner. Fracture surfaces were covered with a light-colored, lustrous deposit. Optical microscope, SEM, and EDS analyses were conducted on sections from one of the studs and revealed that the coating on the fracture surface was cadmium. The fracture had multiple origins, and secondary cracks also contained cadmium. The fracture topography was intergranular. The failures were attributed to liquid metal embrittlement caused by the presence of a cadmium plating and operating temperatures at approximately the melting point of cadmium. It was recommended that components exposed to the cadmium be replaced.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001719
EISBN: 978-1-62708-231-0
... Abstract Metallography is an important component of failure analysis. In the case of a liquid metal embrittlement (LME) failure it is usually conclusive if a third phase constituent can be formed inside of the cracks after failure. In the case where it is necessary to characterize the third...
Abstract
Metallography is an important component of failure analysis. In the case of a liquid metal embrittlement (LME) failure it is usually conclusive if a third phase constituent can be formed inside of the cracks after failure. In the case where it is necessary to characterize the third phase material, one can use various x-ray spectrographic techniques in conjunction with a scanning electron microscope (SEM). This study describes those metallographic and SEM analysis techniques for determining the mode of failure for a locomotive traction motor by LME.
Image
Published: 01 January 2002
Fig. 33 Liquid-metal-induced embrittlement and cracking evidence that occurred during torch brazing. 2% nital etch. 119×
More
Image
Published: 01 January 2002
Fig. 5 Optical micrograph of copper penetration (liquid metal embrittlement) in the broken axles. 300×
More
Image
Published: 15 January 2021
Fig. 57 Liquid metal embrittlement in two aluminum alloy 2024-T4 plates that were wetted with liquid mercury and then loaded to fracture in tension. Fracture occurred rapidly at a stress well below the nominal yield strength of the plates. Visible on each fracture surface is a flat, mercury
More
Image
Published: 15 January 2021
Fig. 36 Liquid-metal-induced embrittlement and cracking evidence that occurred during torch brazing. 2% nital etch. Original magnification: 119×
More
Image
Published: 15 January 2021
Fig. 4 Service failure of a low-alloy steel nut by liquid-metal-induced embrittlement (LMIE). Cadmium-plated, 4140 low-alloy steel (44 HRC) nuts were inadvertently used on bolts for clamps used to join ducts that carried hot (500 °C, or 930 °F) air from the compressor of a military jet engine
More
Image
Published: 15 January 2021
Fig. 5 Failed nose landing gear socket assembly due to liquid-metal-induced embrittlement (LMIE). (a) Overall view of the air-melted 4330 steel landing gear axle socket. Arrow A indicates the fractured lug; arrow B, the bent but unfailed lug. Arrow C indicates the annealed A-286 steel
More
Image
Published: 15 January 2021
Fig. 44 Scanning electron micrscope secondary electron image of liquid metal embrittlement in steel locomotive axle
More
Image
Published: 15 January 2021
Fig. 48 Copper-induced liquid metal embrittlement in a 0.5 wt% carbon steel that occurred when the steel was in contact with liquid copper at 1100 °C (2010 °F). 2% nital etch
More
Image
Published: 15 January 2021
Fig. 49 Zinc-induced liquid metal embrittlement in 321 austenitic stainless steel. Etched in Vilella's reagent
More
Image
Published: 15 January 2021
Fig. 19 (a) Cracks in the head recess of a titanium fastener caused by liquid metal embrittlement. (b) Irregular thickness of cadmium after sectioning
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048158
EISBN: 978-1-62708-229-7
... to the axis of the wire were revealed by metallographic examination. A light-gray phase, which had the appearance of liquid-metal corrosion, was observed to have penetrated the grains on the fracture surfaces. The spring wires were found to fracture in a brittle manner characteristic of fracture from...
Abstract
Several of the springs, made of 1.1 mm diam Inconel X-750 wire and used for tightening the interstage packing ring in a high-pressure turbine, were found broken after approximately seven years of operation. Intergranular cracks about 1.3 mm in depth and oriented at an angle of 45 deg to the axis of the wire were revealed by metallographic examination. A light-gray phase, which had the appearance of liquid-metal corrosion, was observed to have penetrated the grains on the fracture surfaces. The spring wires were found to fracture in a brittle manner characteristic of fracture from torsional loading (along a plane 45 deg to the wire axis). Liquid-metal embrittlement was expected to have been caused by metals (Sn, Zn, Pb) which melt much below maximum service temperature of the turbine. The springs were concluded to have fractured by intergranular stress-corrosion cracking promoted by the action of liquid zinc and tin in combination with static and torsional stresses on the spring wire. As a corrective measure, Na, Sn, and Zn which were present in pigmented oil used as a lubricant during spring winding was cleaned thoroughly by the spring manufacturer before shipment to remove all contaminants.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
...-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance...
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001590
EISBN: 978-1-62708-228-0
... that special care is taken in the selection of materials for the flow channels for the reformed gas. There is a risk of metal dusting corrosion. Therefore, Alloy 601 was selected for certain components of the HTCR. After one year of operation, one HTCR exhibited a certain kind of cracks in the Alloy 601...
Abstract
This case study demonstrates that Alloy 601 (UNS N06601) is susceptible to strain-age cracking. The observation illustrates the potential importance of post weld heat treatment to the successful utilization of this alloy in certain applications.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
... Abstract Several cases of embrittlement failure are analyzed, including liquid-metal embrittlement (LME) of an aluminum alloy pipe in a natural gas plant, solid metal-induced embrittlement (SMIE) of a brass valve in an aircraft engine oil cooler, LME of a cadmium-plated steel screw from...
Abstract
Several cases of embrittlement failure are analyzed, including liquid-metal embrittlement (LME) of an aluminum alloy pipe in a natural gas plant, solid metal-induced embrittlement (SMIE) of a brass valve in an aircraft engine oil cooler, LME of a cadmium-plated steel screw from a crashed helicopter, and LME of a steel gear by a copper alloy from an overheated bearing. The case histories illustrate how LME and SMIE failures can be diagnosed and distinguished from other failure modes, and shed light on the underlying causes of failure and how they might be prevented. The application of LME as a failure analysis tool is also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001822
EISBN: 978-1-62708-180-1
... Abstract This article provides a background of friction-bearing failures due to overheating. The failures of locomotive axles caused by overheated traction-motor support bearings are discussed. The article also describes liquid-metal embrittlement (LME) in steel. It examines the results...
Abstract
This article provides a background of friction-bearing failures due to overheating. The failures of locomotive axles caused by overheated traction-motor support bearings are discussed. The article also describes liquid-metal embrittlement (LME) in steel. It examines the results of various axle studies, with illustrations and concludes with information on the simulation of the LME mechanism.
1