Skip Nav Destination
Close Modal
Search Results for
Liquid metal induced embrittlement
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 127 Search Results for
Liquid metal induced embrittlement
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... Abstract Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid metal induced embrittlement (LMIE). It describes the unique features that assist in arriving at a clear conclusion whether SMIE or LMIE is the most probable cause of the problem. The article briefly reviews some commercial alloy systems where LMIE or SMIE has been documented. It also provides some examples of cracking due to these phenomena, either in manufacturing or in service.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... Abstract Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced...
Abstract
Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced embrittlement. This phenomenon shares many of these characteristics with other modes of environmentally induced cracking, such as hydrogen embrittlement and stress-corrosion cracking. The discussion covers the occurrence, failure analysis, and service failures of the embrittlement. The article also briefly reviews some commercial alloy systems in which liquid-metal-induced embrittlement or solid-metal-induced embrittlement has been documented and describes some examples of cracking due to these phenomena, either in manufacturing or in service.
Image
Published: 01 January 2002
Fig. 33 Liquid-metal-induced embrittlement and cracking evidence that occurred during torch brazing. 2% nital etch. 119×
More
Image
Published: 15 January 2021
Fig. 36 Liquid-metal-induced embrittlement and cracking evidence that occurred during torch brazing. 2% nital etch. Original magnification: 119×
More
Image
Published: 15 January 2021
Fig. 48 Copper-induced liquid metal embrittlement in a 0.5 wt% carbon steel that occurred when the steel was in contact with liquid copper at 1100 °C (2010 °F). 2% nital etch
More
Image
Published: 15 January 2021
Fig. 49 Zinc-induced liquid metal embrittlement in 321 austenitic stainless steel. Etched in Vilella's reagent
More
Image
Published: 30 August 2021
Fig. 16 Cadmium-plated 4140 steel nuts from a military jet engine that failed by liquid metal induced embrittlement. (a) Fragmented and cracked nuts. (b) Typical fracture surface. (c) Electron fractograph showing brittle intergranular failure
More
Image
Published: 15 January 2021
Fig. 7 Failed Ti-6Al-4V shear fasteners. The fasteners were cadmium plated for galvanic compatibility with the aluminum structure. (a) Photograph showing failure at the head-to-shank fillet. (b) Intergranular fracture morphology. Failure was attributed to liquid-metal-induced embrittlement
More
Image
Published: 15 January 2021
Fig. 4 Service failure of a low-alloy steel nut by liquid-metal-induced embrittlement (LMIE). Cadmium-plated, 4140 low-alloy steel (44 HRC) nuts were inadvertently used on bolts for clamps used to join ducts that carried hot (500 °C, or 930 °F) air from the compressor of a military jet engine
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047602
EISBN: 978-1-62708-235-8
... of the stainless steel in an area under residual tensile stress. The copper for the fixtures was replaced by aluminum. No further cracking was encountered. Gas tungsten arc welding Grain boundaries Heat affected zone Residual stress Tensile stress 21Cr-6Ni-9Mn Liquid metal induced embrittlement...
Abstract
Parts of 21Cr-6Ni-9Mn stainless steel that had been forged at about 815 deg C (1500 deg F) were gas tungsten arc welded. During postweld inspection, cracks were found in the HAZs of the welds. Welding had been done using a copper fixture that contacted the steel in the area of the HAZ on each side of the weld but did not extend under the tungsten arc. In SEM examination, the cracks appeared to be intergranular and extended to a depth of approximately 1.3 mm (0.05 in.). The crack appearance suggested that the surface temperature of the HAZ could have melted a film of copper on the fixture surface and that this could have penetrated the stainless steel in the presence of tensile thermal-contraction stresses. The cracks in the weldments were a form of liquid-metal embrittlement caused by contact with superficially melted copper from the fixture and subsequent grain-boundary attack of the stainless steel in an area under residual tensile stress. The copper for the fixtures was replaced by aluminum. No further cracking was encountered.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001480
EISBN: 978-1-62708-229-7
... Copper Overheating Scale (corrosion) Steel tube Liquid metal induced embrittlement One tube in a watertube boiler developed leakage from a perforation and the external surface was covered with a dark deposit indicative of local fusion. A section showed that perforation resulted from...
Abstract
One tube in a watertube boiler developed leakage from a perforation. The external surface was covered with a dark deposit indicative of local fusion. Perforation resulted from the development of a crack from the internal surface. Microscopic examination revealed extensive intergranular penetration by molten copper. Particles of copper were seen in scale deposits on the bore of the tube. The tube in general showed a ferritic structure with partially spheroidized carbide. The fact that fusion of the copper had occurred indicated temperatures of 1100 deg C (2012 deg F) had been experienced locally, and the structural condition suggested that the tube in general had been heated at a lower temperature of the order of 600 deg C (1112 deg F) for some appreciable time. In this instance, overheating of the tube in the absence of the copper deposits may not have led to failure.
Image
Published: 15 January 2021
Fig. 5 Failed nose landing gear socket assembly due to liquid-metal-induced embrittlement (LMIE). (a) Overall view of the air-melted 4330 steel landing gear axle socket. Arrow A indicates the fractured lug; arrow B, the bent but unfailed lug. Arrow C indicates the annealed A-286 steel
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
... Abstract Several cases of embrittlement failure are analyzed, including liquid-metal embrittlement (LME) of an aluminum alloy pipe in a natural gas plant, solid metal-induced embrittlement (SMIE) of a brass valve in an aircraft engine oil cooler, LME of a cadmium-plated steel screw from...
Abstract
Several cases of embrittlement failure are analyzed, including liquid-metal embrittlement (LME) of an aluminum alloy pipe in a natural gas plant, solid metal-induced embrittlement (SMIE) of a brass valve in an aircraft engine oil cooler, LME of a cadmium-plated steel screw from a crashed helicopter, and LME of a steel gear by a copper alloy from an overheated bearing. The case histories illustrate how LME and SMIE failures can be diagnosed and distinguished from other failure modes, and shed light on the underlying causes of failure and how they might be prevented. The application of LME as a failure analysis tool is also discussed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001479
EISBN: 978-1-62708-229-7
... Liquid metal induced embrittlement Several ruptures took place in the front wall tubes of a water tube boiler and samples taken from typical major and minor ruptures were received for examination, together with a sample cut from a sound tube for purposes of comparison. A selection...
Abstract
Several ruptures took place in the front wall tubes of a water tube boiler. Some rupture samples showed ductile failure while others showed brittle failure. Specimens taken from the rupture where a thick edge had been produced, i.e., with little evidence of prior plastic deformation, showed a coarse microstructure indicative of gross overheating. The examination indicated that failure in the main resulted from gross overheating arising from water starvation as could have been due to a number of causes. The ruptures in some tubes were of the type commonly found in overheated tubes, the material being drawn out to a feather edge at the time of rupture. Other ruptures in the same and other tubes were of a more brittle type, this being associated with penetration of material by molten copper derived from scale.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001102
EISBN: 978-1-62708-214-3
... treatment related failures Liquid metal induced embrittlement Background Four cadmium-plated studs failed unexpectedly in a nil-ductility manner. The studs were made of low-alloy steel heat treated to 27 to 32 HRC. They were in operation for only a few hours prior to failure. Applications...
Abstract
Four cadmium-plated ASTM A193 grade B studs from a steam line connector associated with a power turbine failed unexpectedly in a nil-ductility manner. Fracture surfaces were covered with a light-colored, lustrous deposit. Optical microscope, SEM, and EDS analyses were conducted on sections from one of the studs and revealed that the coating on the fracture surface was cadmium. The fracture had multiple origins, and secondary cracks also contained cadmium. The fracture topography was intergranular. The failures were attributed to liquid metal embrittlement caused by the presence of a cadmium plating and operating temperatures at approximately the melting point of cadmium. It was recommended that components exposed to the cadmium be replaced.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001482
EISBN: 978-1-62708-229-7
... Liquid metals Penetration Steel tube Liquid metal induced embrittlement Intergranular fracture This case involves penetration by molten copper in connection with the economiser of a large water-tube boiler. Shortly after this had been put into commission leakage occurred at the welds between...
Abstract
Penetration by molten copper occurred in the economizer of a large water-tube boiler. A cross section through a weld and the crack in the tube revealed a crack was an intergranular fissure. Small fissures of the same type also extended from its flanks. The main fissure was filled with an oxide scale in which were embedded particles having the appearance of metallic copper. It was concluded that the cracking that occurred at the time of re-welding was due to intergranular penetration by copper present in the deposit within the tubes, which had not been completely removed prior to welding. Subsequently, it was ascertained that trouble had been experienced with the centrifugal feed pumps, resulting in scuffing of some bronze rings. The presumption is that bronze particles had been carried in mechanical suspension in the feed water and deposited in the economizer tubes.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001483
EISBN: 978-1-62708-225-9
... deg C (1981 deg F), molten metal came into contact with the bolt, into which it penetrated along the grain boundaries, culminating in rupture. Bolts Copper Liquid metals Overheating Penetration Steel bolt Liquid metal induced embrittlement Intergranular fracture The head portion only...
Abstract
A steel bolt had been used to join the copper connecting strips between the poles of a 10-pole, series-connected, rotating field rotor of a synchronous motor. The exciting current was 155 amps. Failure of the bolt resulted in severe damage to the stator windings by the loosened ends of the strips. The bolt had fractured near the head, a location which probably coincided with the junction of the strips. A portion of the fracture surface was covered with copper that had been deposited in the molten state, while some was also present along the shank of the bolt, having apparently run in between the bolt and the hole in the strip. The bolt end adjacent to the fracture had been subjected to intense local heating. The extent of the grain-growth indicating that the temperature had been in the region of 1200 deg C (2192 deg F). When the temperature reached the melting-point of copper, 1083 deg C (1981 deg F), molten metal came into contact with the bolt, into which it penetrated along the grain boundaries, culminating in rupture.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... (3000 °F). Before these developments (circa 1950), the upper limit of the brazing process did not exceed 1150 °C (2100 °F). Some examples of problems to consider in filler-metal selection are the liquid metal induced embrittlement tendency of titanium alloys and nickel-base alloys brazed with silver...
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... absorption of hydrogen Stress-corrosion cracking (sometimes) Liquid metal induced embrittlement (LMIE), for example, mercury in brass, lithium in 304 stainless steel Solid metal induced embrittlement (SMIE) The following sections describe more detail of some typical embrittlement mechanisms...
Abstract
This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001719
EISBN: 978-1-62708-231-0
... Liquid copper Locomotive axles ASTM A21 Liquid metal induced embrittlement Failures of locomotive axles have occurred for more than 100 years. These failures are common and often not properly examined with the relevant metallographic tools available. Failures of all types of locomotive axles have...
Abstract
Metallography is an important component of failure analysis. In the case of a liquid metal embrittlement (LME) failure it is usually conclusive if a third phase constituent can be formed inside of the cracks after failure. In the case where it is necessary to characterize the third phase material, one can use various x-ray spectrographic techniques in conjunction with a scanning electron microscope (SEM). This study describes those metallographic and SEM analysis techniques for determining the mode of failure for a locomotive traction motor by LME.
1