Skip Nav Destination
Close Modal
Search Results for
Lifting eye
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 28 Search Results for
Lifting eye
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089338
EISBN: 978-1-62708-224-2
... Abstract A steel lifting eye, manufactured from grade 1144 steel, failed during service. The eye ring fractured in two places, adjacent to the threaded shank and diametrically opposite to this region. Woody overload features, typical for resulfurized steels were revealed by SEM...
Abstract
A steel lifting eye, manufactured from grade 1144 steel, failed during service. The eye ring fractured in two places, adjacent to the threaded shank and diametrically opposite to this region. Woody overload features, typical for resulfurized steels were revealed by SEM. The directionality of the features was found to be suggestive of shear overload. It was observed that fracture preferentially followed the nonmetallic inclusions. The fracture was revealed to be parallel to the direction of the manganese sulfide stringer inclusions. The presence of significant banding of the ferrite and pearlite microstructure was revealed by etching. It was also observed that the fracture is primarily along the inclusions and through bands of ferrite. It was concluded that the lifting eye failed as a result of overload. Fracture occurred parallel to the rolling direction, through manganese-sulfide stringers and ferrite bands in the base metal matrix. The material used for this application was very anisotropic, exhibiting substantially poorer long and short transverse mechanical properties than longitudinal properties.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048068
EISBN: 978-1-62708-224-2
... Abstract A hook on a two-leg chain (each 13 mm diam, included angle 60 deg) failed at the junction of the eye and shank while lifting a 4990 kg load. The diam of the hook at this junction was approximately 22 mm. Light intergranular oxidation at the surface on the side of the hook where...
Abstract
A hook on a two-leg chain (each 13 mm diam, included angle 60 deg) failed at the junction of the eye and shank while lifting a 4990 kg load. The diam of the hook at this junction was approximately 22 mm. Light intergranular oxidation at the surface on the side of the hook where cracking started was revealed by visual examination of the fracture region. Almost 50% of the fracture surface was found to contain beach marks (indicative of fatigue failure) while the remainder contained cleavage facets. A medium-coarse acicular as-forged structure was revealed by metallographic examination and the metal was showed by chemical analysis to be semikilled 1015 steel. The fatigue fracture was concluded to have initiated in the intergranular oxidation region and the failure of the hook was contributed by the poor fatigue and impact properties of the forged structure. As a corrective measure, the chain-sling hook was replaced with one made of normalized, fully killed, finegrain 1020 steel.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001556
EISBN: 978-1-62708-218-1
... Abstract A few Cr-Mo steel piston rods from different production batches were found identically cracked in the eye end near the radius after chrome plating and baking treatment. Two of them cracked in the plating stage itself instantly broke on slight tapping. Cracking initiated from the outer...
Abstract
A few Cr-Mo steel piston rods from different production batches were found identically cracked in the eye end near the radius after chrome plating and baking treatment. Two of them cracked in the plating stage itself instantly broke on slight tapping. Cracking initiated from the outer base surface of the forked eye end. The 40 mm diam forged piston rods were subjected to plating after heavy machining on the part without any stress-relieving treatment. Also, time lapses between plating and baking were varied from 3 to 11 h. The brittle cracking along forked eye-end radius portion was attributed to hydrogen embrittlement that occurred during chrome plating.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001222
EISBN: 978-1-62708-225-9
... Abstract A full lift disk, made of die cast brass, which served as a lifting aid in a safety valve, had cracked in service at a number of locations in the vicinity of the threaded hole. During microscopic examination, agglomeration of oxide inclusions were noted in the region of the cracks...
Abstract
A full lift disk, made of die cast brass, which served as a lifting aid in a safety valve, had cracked in service at a number of locations in the vicinity of the threaded hole. During microscopic examination, agglomeration of oxide inclusions were noted in the region of the cracks. Because the die cast brass was alloyed with aluminum, these inclusions consisted predominantly of aluminum oxide. The tolerable limit in pores and oxide inclusions was greatly exceeded in the lift disk under examination. Above all, the numerous oxide skins disrupted the cohesion of the microstructure and were primarily responsible for the failure of the lift disk.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001428
EISBN: 978-1-62708-224-2
... Abstract A special eyebolt was used to lift prefabricated concrete panels weighing approximately 16 cwt. Two eyebolts were used with a spreader bar to give a vertical lift on each eyebolt. Following failure of one eyebolt, which resulted in dropping of the load and subsequent failure...
Abstract
A special eyebolt was used to lift prefabricated concrete panels weighing approximately 16 cwt. Two eyebolts were used with a spreader bar to give a vertical lift on each eyebolt. Following failure of one eyebolt, which resulted in dropping of the load and subsequent failure of the other one, a complete eyebolt was submitted for assessment. Microscopic examination indicated a medium carbon-manganese steel had been used for the lower screwed portion of the eyebolt. Failure may have been due to brittle fracture or to fatigue, both of which could have been initiated at cracks in the hardened material in the region of the weld securing the screwed portion to the intermediate collar and which may have formed at the time of manufacture. Out-of-squareness of the thread with the collar, as was seen in the example submitted, gave rise to bending stresses when the bolt was tightened down, and this could have been a further factor which promoted failure. It was suggested that the design and construction could be improved by either making the component in one piece or, if it was desired, to adapt a standard eyebolt.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003502
EISBN: 978-1-62708-180-1
... into the requirements. The result is that the concept selected will be over-constrained and therefore not an optimal solution to the problem. A large number of custom-designed vertical lift conveyors were required for use in a series of new automated U.S. mail-sorting facilities. These facilities comprise...
Abstract
This article provides assistance to a failure analyst in broadening the initial scope of the investigation of a physical engineering failure in order to identify the root cause of a problem. The engineering design process, including task clarification, conceptual design, embodiment design, and detail design, is reviewed. The article discusses the design process at the personal and project levels but takes into consideration the effects of some higher level influences and interfaces often found to contribute to engineering failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006815
EISBN: 978-1-62708-329-4
.... Specifically, the design specification was compromised by introducing fictitious constraints into the requirements. The result was that an overconstrained conceptual design was selected, which was not an optimal solution to the problem. In this example, a large number of custom-designed vertical lift...
Abstract
The intent of this article is to assist the failure analyst in understanding the underlying engineering design process embodied in a failed component or system. It begins with a description of the mode of failure. This is followed by a section providing information on the root cause of failure. Next, the article discusses the steps involved in the engineering design process and explains the importance of considering the engineering design process. Information on failure modes and effects analysis is also provided. The article ends with a discussion on the consequence of management actions on failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
Abstract
Materials selection is an important engineering function in both the design and failure analysis of components. This article briefly reviews the general aspects of materials selection as a concern in proactive failure prevention during design and as a possible root cause of failed parts. It discusses the overall concept of design and describes the role of the materials engineer in the design and materials selection process. The article highlights the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
... lugs or eyes Built-in members that are the items necessary for the operation of lifting equipment, such as shafts, gears, and drums Most of the failures discussed are related to the more common and critical components of lifting equipment used in steel mills and similar industrial applications...
Abstract
This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks, chains, wire rope, slings, beams, bales, and trunnions; and built-in members such as shafts, gears, and drums.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
..., such as lifting lugs or eyes Built-in members that are the items necessary for the operation of lifting equipment, such as shafts, gears, and drums Most of the failures discussed are related to the more common and critical components of lifting equipment used in steel mills and similar industrial...
Abstract
The types of metal components used in lifting equipment include gears, shafts, drums and sheaves, brakes, brake wheels, couplings, bearings, wheels, electrical switchgear, chains, wire rope, and hooks. This article primarily deals with many of these metal components of lifting equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining the failure analysis of wire ropes and the failure of wire ropes due to corrosion, a common cause of wire-rope failure. Further, it reviews the characteristics of shock loading, abrasive wear, and stress-corrosion cracking of a wire rope. Then, the article provides information on the failure analysis of chains, hooks, shafts, and cranes and related members.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001723
EISBN: 978-1-62708-221-1
... Abstract A new crane failed during the overload test following erection. A test load of 5 tons at the end of the jib (rated capacity 4 tons) was in the process of being slewed at the time of this failure. Inspection revealed that the collapse had resulted from the opening out of one eye...
Abstract
A new crane failed during the overload test following erection. A test load of 5 tons at the end of the jib (rated capacity 4 tons) was in the process of being slewed at the time of this failure. Inspection revealed that the collapse had resulted from the opening out of one eye of the rimming steel tie-bar of the main jib at the lower splice. This permitted the pin to pass through and allowed the jib to fall. Examination subsequently revealed that brittle fracture of two of the corner angles of the tower head assembly had also occurred. Had the tie-bar material been of satisfactory quality and/or, if the end that failed had been flamecut instead of sheared, then the damage resulting from the excessive overload would have been limited to yielding of the material in the region of the pin-joint. Such yielding on an overload test further indicated that the scantlings of the pin-joints were inadequate. Two other crane failures showed that failure resulted from the use of rimming steel, and embrittlement of the material was evident.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001662
EISBN: 978-1-62708-236-5
..., was shipped to the site on a truck bed. On arrival at the plant site in the South East, it was re-examined and then installed in a body of a glass-lined steel separator. However, as soon as the system was subjected to hydrostatic testing, severe leaking took place. The bundle was lifted down from...
Abstract
A steam heated exchanger was designed for concentrating sulfuric acid. Tantalum was selected for the tubing and the tube sheet liner because of its outstanding corrosion resistance. However, although the exchanger passed a searching shop inspection, it leaked during site testing. Considerable argument ensued about whether the cracking observed was due to poor welding during fabrication, or through abuse during handling on site. An SEM examination of the fractures revealed high cycle, low amplitude fatigue, and the problem was traced to vibration during road transport. Further failures were avoided by improved design and packing. This paper illustrated the value of SEM fractography when a rapid investigation is needed under the pressures of a fast moving project.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006814
EISBN: 978-1-62708-329-4
... the unique characteristics associated with connection failures, as well as those aspects associated with welding. In some cases, this article overlaps the coverage of other articles that deal with failures in specific types of applications in which welding is involved, such as cranes and lifting...
Abstract
Welded connections are a common location for failures for many reasons, as explained in this article. This article looks at such failures from a holistic perspective. It discusses the interaction of manufacturing-related cracking and service failures and primarily deals with failures that occur in service due to stresses caused by externally applied loads. The purpose of this article is to enable a failure analyst to identify the causative factors that lead to welded connection failure and to identify the corrective actions needed to overcome such failures in the future. Additionally, the reader will learn from the mistakes of others and use principles that will avoid the occurrence of similar failures in the future. The topics covered include failure analysis fundamentals, welded connections failure analysis, welded connections and discontinuities, and fatigue. In addition, several case studies that demonstrate how a holistic approach to failure analysis is necessary are presented.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001607
EISBN: 978-1-62708-231-0
... strands were of 34 × 7 (6/1) construction. The fractured ends of the individual wire strands and of the wire bundles were clearly visible to the unaided eye. Some of the wires failed by macroscopically ductile processes, while other strands appeared to fail with little or no macroscopic ductility...
Abstract
Wire ropes, pulleys, counterweights, and connecting systems are used for auto tensioning of contact wires of electric railways. A wire rope in one such auto tensioning system suffered premature failure. Failure investigation revealed fatigue cracks initiating at nonmetallic inclusions near the surface of individual wire strands in the rope. The inclusions were identified as Al-Ca-Ti silicates in a large number of stringers, and some oxide and nitride inclusions were also found. The wire used in the rope did not conform to the composition specified for AISI 316 grade steel, nor did it satisfy the minimum tensile strength requirements. Failure of the wire rope was found to be due to fatigue; however, the ultimate fracture of the rope was the result of overload that occurred after fatigue failure had reduced the number of wire strands supporting the load.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001462
EISBN: 978-1-62708-224-2
... indication, this being on the line of the weld and visible to the eye. The region was sectioned circumferentially to provide two specimens, one of which was broken open to reveal a crescent-shaped crack extending 1 2 in. circumferentially × 3 16 in. deep while the other was prepared...
Abstract
Failure occurred by fatigue cracking of links from chains which were used to replace the ropes on grabs of the multirope type. In the first example, the links were made from high tensile steel rod. The fracture in the side of the link was duplex in appearance one half of the surface being discolored, indicative of a preexisting crack of the fatigue type, whilst the remaining portion was brightly crystalline, resulting from brittle fracture at the time of the mishap. In the second example, the fracture took place at a similar location adjacent to one of the butt welds situated at the mid-length of the sides. Brinell hardness values confirmed that the link was made from the higher tensile grade of material. The cracks were due to fatigue, there being no indications that the weld was initially defective.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003505
EISBN: 978-1-62708-180-1
....” The drill shattered, causing a chip to lodge in the right eye of the oiler, ultimately resulting in loss of vision in that eye. Suit was entered against the drill manufacturer alleging a defective drill. The plaintiff's attorney retained a metallurgist who examined the fragments. An unetched...
Abstract
This article discusses the three legal theories on which a products liability lawsuit is based and the issues of hazard, risk, and danger in the context of liability. It describes manufacturing and design defects of various products. The article explains a design that is analyzed from the human factors viewpoint and details the preventive measures of the defects, with examples. It presents four paramount questions relating to the probability of injury which are asked even when one executes all possible preventive measures carefully and thoroughly.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
... is its ability or capability to serve the need for which it was intended. Service life is the duration over which the product or system successfully serves its function. These characteristics define products in the customer's eyes. Arguably the most important characteristics, from a consumer's...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... or system successfully serves its function. These characteristics define products in the customer’s eyes. Arguably the most important characteristics, from a consumer’s perspective, are how well a product or system functions and how long it serves a useful life. Problem Solving, Quality, and Customer...
Abstract
This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service, and material, which are discussed in the following sections along with examples. The tools available for failure analysis are then covered. Further, the article describes the categories of mode of failure: distortion or undesired deformation, fracture, corrosion, and wear. It provides information on the processes involved in RCA and the charting methods that may be useful in RCA and ends with a description of various factors associated with failure prevention.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
.... Fortunately, gear failure analysis typically is not terribly difficult, and the goal of this article is to put that complexity into understandable terms. One very important point that must be recognized is that failure is in the eyes of the user. All gear teeth wear to some degree, and as that happens...
Abstract
This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure analysis.
1