Skip Nav Destination
Close Modal
Search Results for
Laps
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 104 Search Results for
Laps
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047144
EISBN: 978-1-62708-235-8
... (fracturing) Forgings Laps Pressure vessels Seams Alloy steel Metalworking-related failures Certain forged pressure vessels are subjected to autofrettage during their manufacture to induce residual compressive stresses at locations where fatigue cracks may initiate. The results of the autofrettage...
Abstract
During autofrettage of a thick-wall steel pressure vessel, a crack developed through the wall of the component. Certain forged pressure vessels are subjected to autofrettage during their manufacture to induce residual compressive stresses at locations where fatigue cracks may initiate. The results of the autofrettage process, which creates a state of plastic strain in the material, is an increase in the fatigue life of the component. Analysis (visual inspection, 50x/500x unetched micrographs, and electron microprobe analysis) supports the conclusion that the fracture toughness of the steel was exceeded, and failure through the wall occurred because of the following reason: the high level of iron oxide found is highly abnormal in vacuum-degassed steels. Included matter of this nature (exogenous) most likely resulted from scale worked into the surface during forging. Therefore, it is understandable that failure occurred during autofrettage when the section containing these defects was subjected to plastic strains. Because the inclusions were sizable, hard, and extremely irregular, this region would effect substantial stress concentration. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089256
EISBN: 978-1-62708-235-8
... Abstract Alloy steel forgings used as structural members of a ski chair lift grip mechanism were identified to have contained forging laps (i.e., sharp-notched discontinuities) during an annual magnetic particle inspection of all chair lift grip structural members at a mountain resort...
Abstract
Alloy steel forgings used as structural members of a ski chair lift grip mechanism were identified to have contained forging laps (i.e., sharp-notched discontinuities) during an annual magnetic particle inspection of all chair lift grip structural members at a mountain resort. The material was confirmed to be 34Cr-Ni-Mo6. A heavy oxide on the dark area of one of the broken-open laps was revealed by scanning electron microscopy in conjunction with EDS. A bright area that contained ductile dimple rupture was observed adjacent to the dark area. The oxidized portion of the fracture was established to be the preexisting forging lap while the bright area was created during the breaking-open process. As a corrective action all forgings showing laps were recommended to be removed from service. Critical review and revision of the forging process and revisions to the nondestructive evaluation procedures at the forging supplier was recommended.
Image
in Disruption of a Centrifugal Compressor
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 5 Cracking from laps and folds on bore of rivet holes. (×400).
More
Image
in Disruption of a Centrifugal Compressor
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 6 Cracking from laps and folds on bore of rivet holes. (×400).
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047148
EISBN: 978-1-62708-235-8
... for testing. Analysis (visual inspection, 100x nital-etched micrograph, fluorescent magnetic-particle testing, and metallographic examination) supported the conclusion that the rod failed in fatigue with the origin along the lap and located approximately 4.7 mm below the forged surface. The presence of oxides...
Abstract
A connecting rod (forged from 15B41 steel and heat treated to a hardness of 29 to 35 HRC) from a truck engine failed after 73,000 Km (45,300 mi) of service. A piece of the I-beam sidewall of the rod, about 6.4 cm (2 in.) long, was missing when the connecting rod arrived at a laboratory for testing. Analysis (visual inspection, 100x nital-etched micrograph, fluorescent magnetic-particle testing, and metallographic examination) supported the conclusion that the rod failed in fatigue with the origin along the lap and located approximately 4.7 mm below the forged surface. The presence of oxides may have been a partial cause for the defect. Recommendations included better inspection of the forgings by fluorescent magnetic-particle testing before machining.
Image
in Failures Related to Hot Forming Processes
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 10 Micrograph of a forging lap. Note the included oxide material in the lap. Original magnification: 20×
More
Image
in Failure of Steam Pipe at Local Defects
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 2 Section Through Defect Also Revealing Lap Weld. (×1 1 4 ).
More
Image
in Forging Laps in Ski Chair Lift Grip Components
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 Forging lap on ski lift fixed jaw
More
Image
in Forging Laps in Ski Chair Lift Grip Components
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 2 Microstructure of forging lap in another ski lift grip component. As-polished. 111x
More
Image
in Forging Laps in Ski Chair Lift Grip Components
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 3 Broken-open lap. 6x
More
Image
in Forging Laps in Ski Chair Lift Grip Components
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 5 Micrograph of lap. As polished. 58x
More
Image
Published: 01 June 2019
Fig. 1 Blacklight macrograph showing typical lap defect within the bail region of a handling lug (3× magnification)
More
Image
in Failures Related to Hot Forming Processes
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 11 Lap formation in a rib-web forging caused by improper radius in the preform die
More
Image
Published: 30 August 2021
Fig. 26 Fatigue failure of fasteners in single-lap shear carbon-graphite composite joints. (a) Fastener pullout resulting from a static tensile load. (b) Fatigue failure of fasteners initiated by cocking of the fasteners. Original magnification for both: 1⅓×
More
Image
in Cracking on the Parting Line of Closed-Die Forgings
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 4 Effects of diemismatch during forging, which can produce a fold or lap during trimming. The force of the punch moving down causes the material to flow to the empty portion of the die; at the same time, material flows into the area from the trim line.
More
Image
Published: 30 August 2021
Fig. 5 Lap seam weld with oxides and areas of incomplete fusion, indicated by arrows, along the characteristic angled bond line
More
Image
Published: 30 August 2021
Fig. 37 Failure caused by a forging lap in a sledgehammer head. (a) Cracks on the striking face soon after the hammer was first used. (b) A hot alkaline chromate etch revealed oxygen enrichment (white region) adjacent to the crack. Original magnification: 65×
More
Image
in Brittle Fracture Explosive Failure of a Pressurized Railroad Tank Car
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 13 Nozzle/plate lap weld to two center shell segment rings D and E
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
...-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps...
Abstract
This article describes the characteristics of tools and dies and the causes of their failures. It discusses the failure mechanisms in tool and die materials that are important to nearly all manufacturing processes, but is primarily devoted to failures of tool steels used in cold-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps, unconsolidated interiors, and carbide segregation and poor carbide morphology are reviewed with illustrations.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001425
EISBN: 978-1-62708-235-8
... taken place either at a weld in the pipe or at a discontinuity in the material. Microscopic examination through the joints at the ends of the rupture confirmed that the pipe had been made from strip and the edges lap-welded. The second case concerned an 8 in. diam pipe in which a longitudinal defect...
Abstract
An 850 ft. long steam main working at a pressure of 120 psi ruptured. Two lengths of pipe were submitted for examination, one containing the rupture and the other from an unaffected part removed to facilitate repair. The rupture surfaces were smooth, suggesting that the failure had taken place either at a weld in the pipe or at a discontinuity in the material. Microscopic examination through the joints at the ends of the rupture confirmed that the pipe had been made from strip and the edges lap-welded. The second case concerned an 8 in. diam pipe in which a longitudinal defect was discovered running the entire length. Examination of a section through the pipe containing the defect, showed this to be a scarf-welded pipe, only about half the section of the scarf having been satisfactorily welded together. It was concluded that both pipes had been defective at the time of manufacture and that service conditions had served to extend the defects.
1