1-20 of 80 Search Results for

Landing gear

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048164
EISBN: 978-1-62708-217-4
... Abstract A flat spring for the main landing gear of a light aircraft failed after safe execution of a hard landing. The spring material was identified by chemical analysis to be 6150 steel. The fracture was found to have occurred near the end of the spring that was inserted through a support...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001538
EISBN: 978-1-62708-217-4
... Abstract Examination of a cracked nose landing gear cylinder made of AISI 4340 Cr-Mo-Ni alloy steel proved that the part started to fail on the inside diam. When the nucleus of the stress-corrosion crack was studied in detail, iron oxide was found on the fracture surface. A 6500x micrograph...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001540
EISBN: 978-1-62708-217-4
... Abstract Ground maintenance personnel discovered hydraulic fluid leaking from two small cracks in a main landing gear cylinder made from AISI 4340 Cr-Mo-Ni alloy steel. Failure of the part had initiated on the ID of the cylinder. Numerous cracks were found under the chromium plate. A 6500x...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001542
EISBN: 978-1-62708-217-4
... Abstract A nose landing gear cylinder made from AISI 4340 Ni-Cr-Mo alloy steel was found cracked and leaking, causing partial depressurization. Investigation revealed the crack to be a stress-corrosion type, judging by the 6500x electron fractograph. It had started in a region of concentrated...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046146
EISBN: 978-1-62708-217-4
... Abstract The torque-arm assembly (aluminum alloy 7075-T73) for an aircraft nose landing gear failed after 22,779 simulated flights. The part, made from an aluminum alloy 7075-T73 forging, had an expected life of 100,000 simulated flights. Initial study of the fracture surfaces indicated...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001018
EISBN: 978-1-62708-217-4
... Abstract Initial investigation showed that a landing gear failure was the result of a hard landing with no evidence of contributory factors. The objective of reexamination was to determine whether there was any evidence of metallurgical failure. The landing gear was primarily an AISI type 6150...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001555
EISBN: 978-1-62708-217-4
... breakage of the axle had occurred intergranularly in a brittle manner, possibly, initiated by a shallow zone of fatigue along the sharp radius acting as stress riser. Aircraft components Axles Landing gear Radii Fe-0.33C-1.50Ni-1.15Cr Fatigue fracture Brittle fracture Intergranular fracture...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001504
EISBN: 978-1-62708-217-4
... Abstract Despite extensive aircraft landing gear design analyses and tests performed by designers and manufacturers, and the large number of trouble-free landings, aircraft users have experienced problems with and failures of landing gear components. Different data banks and over 200 failure...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001902
EISBN: 978-1-62708-217-4
... Abstract In a spring leg of a main landing gear, large brittle fracture zones indicated a predominately cleavage pattern with some ductile dimples, and a tiny fatigue segment disclosed fine striations. Factors influencing failure were surface decarburization, notch sensitivity of the modified...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001706
EISBN: 978-1-62708-217-4
... Abstract The truck beam of the left main landing gear (MGL) of a Boeing 707 airplane collapsed on the ground just after the aircraft was unloaded and refueled. The investigation revealed that failure was caused by the propagation of an intergranular crack originating from the bottom of the pit...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001020
EISBN: 978-1-62708-214-3
... Abstract The right landing gear on a twin-turboprop transport aircraft collapsed during landing. Preliminary examination indicated that the failure occurred at a steel-to-aluminum (7014) pinned drag-strut connection due to fracture of the lower set of drag-strut attachment lugs at the lower end...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001025
EISBN: 978-1-62708-214-3
... Abstract A piece of wheel flange separated from the main landing gear wheel of a C130 aircraft as it taxied on a runway. The wheel was a 2014-T61 aluminum alloy forging and had been in service nearly 20 years. Fractographic evidence indicated that the initial crack growth was caused by high...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001291
EISBN: 978-1-62708-215-0
... Abstract Examination of several fighter aircraft main landing gear legs revealed unusual cracking in the hard chromium plating that covered the sliding section of the inner strut. The cracking was associated with cracks in the 35 NCD 16 steel beneath the plating. A detailed investigation...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001292
EISBN: 978-1-62708-215-0
... Abstract A crack was detected in one arm of the right-hand horizontal brace of the nose landing gear shock strut from a large military aircraft. The shock strut was manufactured from a 7049 aluminum alloy forging in the shape of a delta. A laboratory investigation was conducted to determine...
Image
Published: 01 January 2002
Fig. 21 Landing-gear spring, 6150 steel, that broke during a hard landing. (a) Configuration and dimensions (given in inches) of the spring. (b) Fractograph showing fatigue crack that initiated the brittle fracture. 7× More
Image
Published: 01 June 2019
Fig. 1 Landing-gear spring, 6150 steel, that broke during a hard landing. (a) Configuration and dimensions (given in inches) of the spring. (b) Fractograph showing fatigue crack that initiated the brittle fracture. 7× More
Image
Published: 30 August 2021
Fig. 35 Landing-gear spring, 6150 steel, that broke during a hard landing. (a) Configuration and dimensions (given in inches) of the spring. (b) Fractograph showing fatigue crack that initiated the brittle fracture; magnification, 7× More
Image
Published: 01 January 2002
Fig. 4 Failed nose landing gear socket assembly due to LMIE. (a) Overall view of the air-melted 4330 steel landing gear axle socket. Arrow A indicates the fractured lug; arrow B, the bent but unfailed lug. Arrow C indicates the annealed A-286 steel interference-fit plug containing the grease More
Image
Published: 01 June 2019
Fig. 1 a: Fractured main landing gear truck beam with axles. b: Overview of the fracture surface, the semicircular stress corrosion crack can be seen at bottom just right of centre (arrow) and a corroded area at inside top. c: Overview of the semicircular stress corrosion crack zone, the arrow More
Image
Published: 01 June 2019
Fig. 3 a: Main landing gear components: broken axle (1) and crank lever (2). b: Details of the axle showing the longitudinal crack in the hub and the circumferential fracture. c: Inside of the hub showing flaking (1), damage (2) to the electroless nickel coating and corrosion pitting (3 More