Skip Nav Destination
Close Modal
By
Friedrich Karl Naumann, Ferdinand Spies
By
Zheng-Fei Hu, Da-Hai He, Xi-Mao Wu
By
Friedrich Karl Naumann, Ferdinand Spies
By
Friedrich Karl Naumann, Ferdinand Spies
By
R. A. Myllymaki
By
Bani P. Mohanty, David A. Shores
By
Clifford C. Bigelow
By
Friedrich Karl Naumann, Ferdinand Spies
By
S.P. Lynch, D.P. Edwards, R.B. Nethercott, J.L. Davidson
By
Lester E. Alban
By
Friedrich Karl Naumann, Ferdinand Spies
Search Results for
Lamellar structure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 65
Search Results for Lamellar structure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Micrograph of impeller specimen. This structure, which consists of lamellar...
Available to PurchasePublished: 01 January 2002
Fig. 7 Micrograph of impeller specimen. This structure, which consists of lamellar carbides in an austenitic matrix, is considered normal for this material. Etched with V2A reagent. 500×. Source: Ref 11
More
Book Chapter
Poorly Drawable Steel Wire for Ball Bearings
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001258
EISBN: 978-1-62708-235-8
... sides of the fracture of 300 mm each. Missing in the lamellar surface structure, with the exception of the remnants of a coarse network, were the pre-eutectically precipitated carbides to be expected in this steel. Surrounding the ferritic region in the surface structure, a ring of lamellar pearlite...
Abstract
A drawing plant which processed steel wire of designation 105 Cr 2 for ball bearings had losses due to crack formation and wire breakage during drawing. To establish the reason for the breakage, seven fractures were submitted for investigation with contiguous wire segments on both sides of the fracture of 300 mm each. Missing in the lamellar surface structure, with the exception of the remnants of a coarse network, were the pre-eutectically precipitated carbides to be expected in this steel. Surrounding the ferritic region in the surface structure, a ring of lamellar pearlite is seen, which turns into the granular annealed structure towards the core. The described structural phenomena were noted in all of the seven fracture regions. Their intensity always decreased with increasing distance from the fracture. Surface decarburization caused the formation of lamellar pearlite during annealing. This investigation further revealed that the localized decarburization and pearlite formation was present already in the rolled wire in uneven distribution over the entire coil length.
Image
Examples of some of the microstructures of the failed couplings (transverse...
Available to Purchase
in Failure of Nickel-Aluminum-Bronze Hydraulic Couplings, with Comments on General Procedures for Failure Analysis
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 6 Examples of some of the microstructures of the failed couplings (transverse, T; longitudinal, L). (c) Coarse α-matrix grains with a fine, spaced lamellar structure κ IIII phase at grain boundaries and a low concentration of κ IIV precipitates at grain interiors. (d) Large α-matrix
More
Image
Micrographs of grate bar that suffered hot corrosion. (a) Unetched, showing...
Available to Purchase
in Hot Corrosion of Stainless Steel Grate Bars in Taconite Indurators
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 3 Micrographs of grate bar that suffered hot corrosion. (a) Unetched, showing external oxide scale and internal sulfide particles (light gray area). (b) Etched, showing external oxide scale along with precipitated carbides (dark gray area)and lamellar structure consisting of austenite
More
Book Chapter
Failure During Fabrication of an Armature Because of Lamellar Tearing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089793
EISBN: 978-1-62708-235-8
... Lamellar structure Lamellar tearing Motor amatures Thermal stresses Welded joints Fe-0.21C-0.77Mn Joining-related failures During the final shop welding of a large armature for a direct-current motor (4475 kW, or 6000 hp), a large bang was heard, and the welding operation stopped. When the weld...
Abstract
During the final shop welding of a large armature for a direct-current motor (4475 kW, or 6000 hp), a loud bang was heard, and the welding operation stopped. When the weld was cold, nondestructive evaluation revealed a large crack adjacent to the root weld. Investigation showed the main crack had propagated parallel to the fusion boundary along the subcritical HAZ and was associated with long stringers of type II manganese sulfide (MnS) inclusions. This supported the conclusion that the weld failed by lamellar tearing as a result of the high rotational strain induced at the root of the weld caused by the weld design, weld sequence, and thermal effects. Recommendations included removing the old weldment to a depth beyond the crack and replacing this with a softer weld metal layer before making the main weld onto the softer layer.
Book Chapter
Failure Analysis of T12 Boiler Re-Heater Tubes During Short-Term Service
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001834
EISBN: 978-1-62708-241-9
... at the grain boundaries and coarsen. The typical lamellar structure of pearlite changes to a particle structure. Such pearlite steel exhibits a tendency toward pearlite spheroidisation after long-term exposure to high temperatures. Structural changes form cavities and cause internal damage [ 6 ]. Thus...
Abstract
The failure of T12 reheater tubes that had been in service for only 3000 h was investigated. The thickness of the tubes was visibly reduced by heavy oxidation corrosion on the inner and outer walls. The original pearlite substrate completely decomposed. Uniform oxide scale observed on the inner wall showed obvious vapor oxidation corrosion characteristics. Corrosion originated in the grain boundary, and selective oxidation occurred due to ion diffusion in the substrate. The layered oxide scale on the inner wall is related to the different diffusion rates for different cations. Exposure to high temperature corrosive flux accelerated the corrosion on the outer wall. Microstructure degradation and the corrosion characteristics observed indicate that the tubes failed primarily because of overheating, which is confirmed by calculations.
Book Chapter
Arizona Mine Ore Conveyor Bridge Collapse
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001588
EISBN: 978-1-62708-221-1
... ductility direction of the transition joint plate, lamellar tearing of plate material occurred at the boxed I-beam fillet weld attachment. Brittle fracture of this joint precipitated global collapse of the truss structure. Bridges (structures) Ore conveyors Structural steel Brittle fracture...
Abstract
On 23 Dec 1997, a portion of the main ore conveyor at a large mine collapsed onto a highway and shut down mine operations. The conveyor structure that collapsed was supported by a steel truss spanning 185 ft. Truss failure occurred just as the conveyor transport rate was increased to 8,260 tph. Under this total loading, which was only slightly above the regular operating condition, a poorly designed and fabricated transition joint in the west lower chord failed, thereby overloading other key structural members and causing the entire truss to collapse. Another contributing cause of the collapse was the transition joint welds, where the fracture originated. They were made with undersized fillet welds, 20% smaller than specified on the original fabrication drawing. Because of the poorly designed joint detail and the deficient welds, both of which concentrated stress and strain in the low ductility direction of the transition joint plate, lamellar tearing of plate material occurred at the boxed I-beam fillet weld attachment. Brittle fracture of this joint precipitated global collapse of the truss structure.
Book Chapter
Metallic Inclusions in Steel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001184
EISBN: 978-1-62708-235-8
... Abstract Examples of metallic inclusions in steels of various types are presented. The structure of an inclusion in an annealed Fe-1C-1.5Cr steel consisted of ferrite with lamellar pearlite. The carbon content of the inclusion was therefore considerably lower than that of the chromium steel...
Abstract
Examples of metallic inclusions in steels of various types are presented. The structure of an inclusion in an annealed Fe-1C-1.5Cr steel consisted of ferrite with lamellar pearlite. The carbon content of the inclusion was therefore considerably lower than that of the chromium steel and was adapted to the latter by diffusion only at the periphery of the inclusion. In another section of a hardened piece of the same chromium steel, the steel in this case had a structure of martensite with hypereutectic carbide, while the inclusions consisted of a very fine laminated eutectoid of the lower pearlite range (Troostite). In a pipe of 18-8 austenitic stainless steel a weakly magnetizable spot of limited size was found. This inclusion too was probably more alloy-deficient than the austenitic steel, similar to the ones described above. All three cases were casting defects.
Book Chapter
Steel Wire Cracked at Welded Joint
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001186
EISBN: 978-1-62708-234-1
... of the fracture, but they had no effect on the breakage of the wire. Away from the fracture area, the wire had a normal structure of hyperfine lamellar pearlite (sorbite) of a “patented” and cold drawn steel wire. In the vicinity of the fracture, the cementite of the pearlite was partially spheroidized, while...
Abstract
A 2.3 mm diam steel wire broke during cable twisting. The fracture occurred obliquely to the longitudinal axis of the wire and showed a constriction at the end. Therefore it was a ductile fracture. File mark type work defects were noticeable on the wire surface at both sides of the fracture, but they had no effect on the breakage of the wire. Away from the fracture area, the wire had a normal structure of hyperfine lamellar pearlite (sorbite) of a “patented” and cold drawn steel wire. In the vicinity of the fracture, the cementite of the pearlite was partially spheroidized, while at the fracture itself it was completely spheroidized. Therefore the wire was locally annealed at this point. It was likely that the wire cracked at this point during the last drawing and then broke during twisting due to its lower strength in the weakened cross section after prior deformation.
Book Chapter
Failure of Ship Hull Plate Attributed to Lamellar Tearing
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001141
EISBN: 978-1-62708-227-3
... 1967 . 13. Watanabe M. , “The Pull-Out Type Fracture in Rolled Steel Plate” , Symposium on Welding in Ship Building, The Institute of Welding , pp. 219 – 225 , London 1961 . 14. Takeshi Y. , “Lamellar Tearing and Marine Structures” , Welding and Metal Fabrication , Volume...
Abstract
During a refit of a twenty-year-old Naval destroyer, two cracks were found on the inside of the killed carbon-manganese steel hull plate at the forward end of the boiler room. The cracks coincided with the location of the top and bottom plates of the bilge keel. Metallurgical examination of sections cut from the cracked area identified lamellar tearing as the principle cause of the cracking. This was surprising in 6 mm thick hull plates. Corrosion fatigue and general corrosion also contributed to hull plate perforation. Although it is probable that more lamellar tears exist near the bilge keel in other ships and may be a nuisance in the future, the hull integrity of the ships is not threatened and major repairs are not needed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001139
EISBN: 978-1-62708-221-1
... of the failure include the use of bolts in lieu of welding, a welding schedule that reduces the propensity of lamellar tearing, and the use of an alloy that precludes lamellar tearing. However, if abuse of the crane was the primary cause of failure, none of these recommendations would have prevented...
Abstract
A truck-mounted hydraulic crane had a horizontal thrust bearing with one race attached to the truck and the other to the rotating crane. The outside race of the bearing was driven by a pinion gear, and it is through this mechanism that the crane body rotated about a vertical axis. The manufacturer welded the inner race to the carrier in a single pass. After several years of service, the attachment weld between the bearing inner race and the turntable failed in the area adjacent to the heat-affected zone. The fracture zone where there was the greatest tension was heavily oxidized. In the zone where the bearing was in compression, there was a clean surface indicating recent fracture. Finally, there were areas where the weld did not meet AWS specifications for convexity or concavity. These areas were weak enough to allow fatigue cracks to initiate. Recommendations to prevent reoccurrence of the failure include the use of bolts in lieu of welding, a welding schedule that reduces the propensity of lamellar tearing, and the use of an alloy that precludes lamellar tearing. However, if abuse of the crane was the primary cause of failure, none of these recommendations would have prevented deterioration of the machine to an extent that would have rendered the failure improbable.
Book Chapter
Hot Corrosion of Stainless Steel Grate Bars in Taconite Indurators
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001109
EISBN: 978-1-62708-214-3
..., and probably not protective. Typical unetched and etched microstructures near the top surface of the grate bar are shown in Fig. 3 , respectively. Upon etching, the internal microstructure showed coalescence of carbide particles outlining the cored cast structure, as well as the presence of a lamellar...
Abstract
Grate bars in the traveling grate indurators in several taconite processing units suffered excessive corrosion following a conversion from acid to fluxed pellet production procedures. The campaign life of the HH grade cast stainless steel bars was reduced from more than 7 years to approximately 9 months. Several corroded grate bars were examined metallographically and by electron microscopy to determine the causes of the accelerated corrosion. Chemical and X-ray diffraction analyses were also conducted, along with simulation tests to assess the role of alkali chlorides in the corrosion process. The basic cause of degradation was found to be hot corrosion caused by the deposition of alkali sulfates and chlorides. However this degradation may have been aggravated by thermal cycling and abrasion. The source of the salt was impurities in the flux. Two potential solutions were proposed: modification of the processing parameters to reduce the salt deposition and / or change of bar materials to a more resistant alloy.
Image
TEM replica of a fracture surface of a compact-tension test specimen showin...
Available to Purchase
in Failure of Nickel-Aluminum-Bronze Hydraulic Couplings, with Comments on General Procedures for Failure Analysis
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 14 TEM replica of a fracture surface of a compact-tension test specimen showing features identified as lamellar pearlite structure, sometimes mistaken for fatigue striations 9
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001442
EISBN: 978-1-62708-221-1
... through the fillet welds and zone showed lamellar tearing, which confirmed that failure had occurred in weld metal adjacent to the fusion face of the fillet to the vane. Results of the investigation indicated that the primary cause of failure of the impeller was the development of fatigue cracks from...
Abstract
The impeller of a 4 ft. diam extraction fan driven by a 120 hp motor at 1,480 rpm. disrupted suddenly. The majority of the vanes had become detached where they were welded to the plates. At other locations, separation of the vanes was accompanied by tearing of the adjacent plate, failure being initiated at the weld fillets of the inner end of the vanes. An unusual feature was that the blades disclosed regions having a pronounced striated and stepped appearance. The etched microstructure was typical of a low carbon rolled plate having the usual banded appearance. A cross section through the fillet welds and zone showed lamellar tearing, which confirmed that failure had occurred in weld metal adjacent to the fusion face of the fillet to the vane. Results of the investigation indicated that the primary cause of failure of the impeller was the development of fatigue cracks from the unwelded roots of the fillet welds, by which the vanes were attached to the supporting plates. The impeller would have shown increased resistance to fatigue crack initiation if the T joint between the vanes and plates had been of the full penetration type.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001688
EISBN: 978-1-62708-234-1
... suffered less oxidation had a structure of ferrite and lamellar pearlite across the wall ( Figure 1a ) while the others had a structure of ferrite and spheroidized pearlite with extensive decarburization at the outer surface ( Figure 1b ), and a lesser degree of decarburization at the inside. Fig. 1...
Abstract
Some examples of equipment failures involving high temperature operation are presented. They include some steam generator superheater components and a pump shaft that should not have been at high temperature. Metallographic analysis is used to determine the causes of failure in each case.
Book Chapter
Short-Term Failure of Carbon Steel Boiler Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001340
EISBN: 978-1-62708-215-0
... in.), consistent with the specified thickness, while along the fire-side, tube wall thickness measured as low as 0.178 cm (0.070 in.) near the fissures. Metallography Optical metallography on the coldside of tube 4 revealed a ferritic structure with small islands of lamellar pearlite, typical...
Abstract
Two identical “D” tube package boilers, installed at separate plants, experienced a number of tube ruptures after relatively short operating times. The tubes, which are joined by membranes, experienced localized bulging and circumferential cracking along the fireside crown as a result of overheating and thermal fatigue. It was recommended that recent alterations to the steam-drum baffling be remodified to improve circulation in the boiler and prevent further overheating. Several thermocouples were attached to tubes in problem areas of the boiler to monitor the effects of the steam-drum modifications on tube wall temperatures.
Book Chapter
Corroded Pump Impeller
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001165
EISBN: 978-1-62708-234-1
... as well as the pump housing consisted of cast iron alloyed with nickel. Chemical analysis of the non-corroded part of the impeller showed the following composition [in wt.%]: C ges./total Graphit/grapite 3,14 2,55 Ni S 3,12 0,15 The microstructure consisted of lamellar...
Abstract
After operating for six months, a pump impeller (of nickel-containing cast iron) showed considerable corrosion. Cross sections showed substantial penetration of the wall thickness without loss of material. The observed supercooled structure implied low strength but would not affect corrosion resistance. Etching of the core structure showed a selective form of cast iron corrosion (spongiosis or graphitic corrosion) which lowered the strength of the cast iron enough that a knife could scrape off a black powder (10.85% C, 1.8% S, 1.45% P). Analysis showed that some of the “sulfate” found in the scrubbing water was actually sulfide (including hydrogen sulfide) and was the main cause of corrosion.
Book Chapter
Failure of Nickel-Aluminum-Bronze Hydraulic Couplings, with Comments on General Procedures for Failure Analysis
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001617
EISBN: 978-1-62708-227-3
... concentration of fine κ IIV precipitates within selected α grains. Fig. 6 Examples of some of the microstructures of the failed couplings (transverse, T; longitudinal, L). (c) Coarse α-matrix grains with a fine, spaced lamellar structure κ IIII phase at grain boundaries and a low concentration of κ...
Abstract
Failures of various types of hydraulic couplings used to connect pipes in a naval vessel are described and used to illustrate some of the general procedures for failure analysis. Cracking of couplings, which were manufactured from nickel-aluminum- bronze extruded bar, occurred in both seawater and air environments. Cracks initiated at an unusually wide variety of sites and propagated in either longitudinal or circumferential directions with respect to the axis of the couplings. Fracture surfaces were intergranular and exhibited little or no sign of corrosion (for couplings cracked in air), and there was very limited plasticity. Macroscopic progression markings were observed on fracture surfaces of several couplings but were not generally evident. At very high magnifications, numerous slip lines, progression markings, and striations were observed. In a few cases, where complete separation had occurred in service, small areas of dimpled overload fracture were observed. It was concluded from these observations, and from comparisons of cracks produced in service with cracks produced by laboratory testing under various conditions, that cracking had occurred by fatigue. The primary cause of failure was probably the unanticipated presence of high-frequency stress cycles with very low amplitudes, possibly due to vibration, resonance, or acoustic waves transmitted through the hydraulic fluid. Secondary causes of failure included the presence of high tensile residual stresses in one type of coupling, undue stress concentrations at some of the crack-initiation sites, and overtorquing of some couplings during installation. Recommendations on ways to prevent further failures based on these causes are discussed.
Book Chapter
Tooth Bending Fatigue Failure of a Spiral Bevel Drive Set
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001497
EISBN: 978-1-62708-221-1
... of the remaining teeth, section it midway from both ends, and prepare a sample for a case hardness traverse and microscopic examination. From the case hardness survey and the microscopic examination, the following results were observed: Core structure: An equal admixture of lamellar pearlite and low...
Abstract
A spiral bevel gear set in the differential housing of a large front-end loader moving coal in a storage area failed in service. The machine had operated approximately 1500 h. Although the failure involved only the pinion teeth, magnetic particle inspection was performed on each part. The 4817 NiMo alloy steel pinion showed no indication of additional cracking, nor did the 4820 NiMo alloy steel gear. The mode of failure was tooth bending fatigue with the origin at the designed position: root radius at midsection of tooth. The load was well centered, and progression occurred for a long period of time. The cause of failure was a suddenly applied peak overload, which initiated a crack at the root radius. Progression continued by relatively low overstress from the crack, which was now a stress-concentration point. This was a classic tooth bending fatigue failure.
Book Chapter
Examination of Wires for the Manufacture of Tempered Bolts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001259
EISBN: 978-1-62708-233-4
... G the cementite was somewhat stronger spheroidized ( Fig. 1 ) than in that of shipments S1 ( Fig. 2 ) and S2 ( Fig. 3 ), whose lamellar pearlite structure was still recognizable. This is most likely connected with the fine grained steel's lower supercooling propensity of the austenitic...
Abstract
A bolt manufacturer observed that products made from certain shipments of steel 41 Cr4 wire were prone to the formation of quench cracks in their rolled threads. The affected wire was tested and found to be highly sensitive to overheating because of the metallurgical method by which it was produced. A stronger decarburization of the case was a contributing factor that could not be prevented by working because the thread was rolled. Hardening tests conducted by the bolt manufacturer showed that quench cracks did not occur in specimens that were turned down before hardening and when notches were machined instead of beaten with a chisel.
1