Skip Nav Destination
Close Modal
By
J.B. Elder
By
J.P. Howell, D.Z. Nelson
Search Results for
Inspection
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 842
Search Results for Inspection
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Remote Inspection of a 46-Year-Old Buried High-Level Waste Storage Tank
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001639
EISBN: 978-1-62708-229-7
... Abstract This paper describes the remote ultrasonic (UT) examinations of a high-level radioactive waste storage tank at the Savannah River Site in South Carolina. The inspections, carried out by E.R. Holland, R.W. Vande Kamp, and J.B. Elder, were performed from the contaminated, annular space...
Abstract
This paper describes the remote ultrasonic (UT) examinations of a high-level radioactive waste storage tank at the Savannah River Site in South Carolina. The inspections, carried out by E.R. Holland, R.W. Vande Kamp, and J.B. Elder, were performed from the contaminated, annular space of the 46 year old, inactive, 1.03 million gallon waste storage tank. A steerable, magnetic wheel wall crawler was inserted into the annular space through small (6 in., or 150 mm, diam) holes/risers in the tank top. The crawler carried the equipment used to simultaneously collect data with up to four UT transducers and two cameras. The purpose of this inspection was to verify corrosion models and to investigate the possibility of previously unidentified corrosion sites or mechanisms. The inspections included evaluation of previously identified leak sites, thickness mapping, and crack detection scans on specified areas of the tank. No indications of reportable wall loss or pitting were detected. All thickness readings were above minimum design tank-wall thickness, although several small indications of thinning were noted. The crack detection and sizing examinations revealed five previously undetected indications, four of which were only partially through-wall. The cracks that were examined were found to be slightly longer than expected but still well within the flaw size criteria used to evaluate tank structural integrity.
Book Chapter
Inspection and Analysis of Aluminium Racks in Spent Fuel Storage Basins
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001710
EISBN: 978-1-62708-229-7
... the walk-down inspections of the basins. In addition, extensive corrosion of the aluminum storage racks was visible from the walkways around the basin. As a part of refurbishment of the storage basins, a decision was made to replace the racks with new ones. During the rack replacement process in L...
Abstract
Aluminum-clad spent nuclear fuel is stored in water filled basins at the Savannah River Site awaiting processing or other disposition. After more than 35 years of service underwater, the aluminum storage racks that position the fuel bundles in the basin were replaced. During the removal of the racks from the basin, a failure occurred in one of the racks and the Savannah River Technology Center was asked to investigate. This paper presents the results of the failure analysis and provides a discussion of the effects of corrosion on the structural integrity of the storage racks.
Book Chapter
Ultrasonic Inspection of an Upset-Forged 4118 Steel Shaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0059932
EISBN: 978-1-62708-236-5
... Abstract Field failures, traced to internal cracks that were initiated from gross nonmetallics, were encountered in the upset portion of forged 4118 steel shafts. Ultrasonic inspection was thought to be the best method for detection from the location of these cracks, their orientation...
Abstract
Field failures, traced to internal cracks that were initiated from gross nonmetallics, were encountered in the upset portion of forged 4118 steel shafts. Ultrasonic inspection was thought to be the best method for detection from the location of these cracks, their orientation, and the size of the shaft. A longitudinal beam was sent in from the end of the shaft. The shaft was observed to have a radially drilled oil hole 9 mm in diam. Since there was a variation in flaw orientation, testing of the shaft was desired from both the long and short end. The rejection level was set at 20% of full screen and was based on the size of flaws observed when the shafts were cut up. The inclusions were considered to be rejectable if the size was larger than 20 mm diam. Similar flaws were observed in larger shafts, but no flaws were observed once the shafts were sectioned. It was interpreted that the flaw signals were false and had happened when a portion of the beam struck the oily surface of the longitudinal oil hole. The problem was solved by removing the oil film from the longitudinal oil hole.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0059924
EISBN: 978-1-62708-235-8
... Abstract The large steel ring produced for a nuclear application from a billet of 8822 steel was inspected. The large billet was first forged into a doughnut preform in a large press, and then formed into the ring by ring rolling. A straight-beam ultrasonic inspection was instituted...
Abstract
The large steel ring produced for a nuclear application from a billet of 8822 steel was inspected. The large billet was first forged into a doughnut preform in a large press, and then formed into the ring by ring rolling. A straight-beam ultrasonic inspection was instituted and calibrated using the back-surface-reflection method to determine whether adequate ultrasonic penetration was available. Areas of indications were noted at approximately midheight and adjacent to the bore area. An axial angle-beam inspection from the outside was performed, mainly in the area of indications to reveal detectable indications. The indications were not considered serious enough to reject the forgings. A few small indications in the areas tested were revealed by magnetic particle inspection. The area was conditioned by grinding and polishing to obtain an additional inspection at a greater depth from the inside surface. A much more severe condition was revealed after the test. The indications were classified as areas of chemical segregation and nonmetallic inclusions. The ring was considered unsatisfactory for the application and replacement of the defective ring from an acceptable billet was the most economical solution.
Book Chapter
Radiographic Inspection for Creep Fissures in Reformer-Furnace Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0060144
EISBN: 978-1-62708-234-1
... filled with a nickel catalyst. The tubes were centrifugally cast from ASTM A297, grade HK-40 (Fe-25Cr-20Ni-0.40C), heat-resistant alloy. The tube was concluded after metallurgical inspection to have failed from creep rupture (i.e., stress rupture). A project for detecting midwall creep fissuring...
Abstract
Two steam-methane reformer furnaces were subjected to short-time heat excursions because of a power outage, which resulted in creep bulging in the Incoloy 800 outlet pigtails, requiring complete replacement. Each furnace had three cells, consisting of 112 vertical tubes per cell, each filled with a nickel catalyst. The tubes were centrifugally cast from ASTM A297, grade HK-40 (Fe-25Cr-20Ni-0.40C), heat-resistant alloy. The tube was concluded after metallurgical inspection to have failed from creep rupture (i.e., stress rupture). A project for detecting midwall creep fissuring was instigated as a result of the failure. It was concluded after laboratory radiography and macroexamination that if the fissure were large enough to show on a radiograph, either with or without the catalyst, the tube could be expected to fail within one year. The set up for in-service radiograph examination was described. The tubes of the furnace were radiographed during shut down and twenty-four tubes in the first furnace and 53 in the second furnace showed significant fissuring. Although, radiography was concluded to be a practical technique to provide advance information, it was limited to detecting fissures caused by third-stage creep in tubes because of the cost involved in removing the catalysts.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0060154
EISBN: 978-1-62708-234-1
... from different sections (ruptured area, slightly bulged but nonruptured area and visually sound metal) were inspected. The presence of pinhead-size intergranular fissures throughout the cross sections of the latter two samples was observed. An ultrasonic attenuation method was employed to investigate...
Abstract
One of the coils in the radiant section of a primary reformer furnace used in an ammonia plant was found leaking. The bottom of one of seven outlet headers (made of ASME SA-452, grade TP316H, stainless steel) was revealed during examination to be ruptured. It was revealed by metallurgical examination that it had failed as a result of intergranular fissuring and oxidation (creep rupture). The ruptured area revealed that the header had failed by conventional long-time creep rupture as a result of exposure to operating temperatures probably between 900 and 955 deg C. Three samples from different sections (ruptured area, slightly bulged but nonruptured area and visually sound metal) were inspected. The presence of pinhead-size intergranular fissures throughout the cross sections of the latter two samples was observed. An ultrasonic attenuation method was employed to investigate the remaining headers. All headers were revealed by ultrasonic readings to be in an advanced stage of creep rupture and no areas were found to be fissured to a degree that they needed immediate replacement. As a conclusion, the furnace was deemed serviceable and it was established that in the absence of local hot spots, the headers would survive for a reasonable period of time.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0060104
EISBN: 978-1-62708-220-4
... Abstract Eddy current inspection was performed on a vertical evaporator unit (that contained 180 tubes) used in a chemical processing plant. It was advised that the tube material was type 316 stainless steel. The shell-side fluid was condensate and gaseous methylene chloride, while the tube...
Abstract
Eddy current inspection was performed on a vertical evaporator unit (that contained 180 tubes) used in a chemical processing plant. It was advised that the tube material was type 316 stainless steel. The shell-side fluid was condensate and gaseous methylene chloride, while the tube-side fluid was contaminated liquid methylene chloride. More than 100 tubes exhibiting severe outer surface pitting and cracklike indications near each tube sheet were revealed during eddy current inspection. It was observed that the indications correlated with rust-stained, pitted, and cracked areas on the outer surfaces. The cracking was revealed by metallographic examination to have initiated from the outer surface, frequently at pits, and penetrated the tube wall in a transgranular, branching fashion. The crack features were characteristic of chloride stress-corrosion cracking. A change in tube material was recommended to avoid future failures and loss of service.
Image
Pre-inspection and post-inspection damage distributions for two NDE techniq...
Available to PurchasePublished: 01 January 2002
Image
Typical cracking found by fluorescent magnetic-particle inspection of the i...
Available to PurchasePublished: 01 January 2002
Fig. 19 Typical cracking found by fluorescent magnetic-particle inspection of the internal surface of a feedwater heater.
More
Image
Ways to increase inspection interval. (a) Base case. (b) Use of better mate...
Available to PurchasePublished: 01 January 2002
Fig. 8 Ways to increase inspection interval. (a) Base case. (b) Use of better material. (c) Use of more sensitive inspection method. (d) (Detail) design with lower stress. (e) Redundancy (fail-safe) or crack arresters. Here, H is the safety limit that is taken to be twice the inspection
More
Image
Typical inspections. (a) Automated inspection installation for the fluoresc...
Available to PurchasePublished: 01 January 2002
Fig. 1 Typical inspections. (a) Automated inspection installation for the fluorescent penetrant inspection of large workpieces, such as castings. The installation incorporates a complex roller conveyor system. (b) Retirement-for-Cause (RFC) inspection facility
More
Image
Retirement-for-Cause (RFC) inspection system probability of detection (POD)...
Available to PurchasePublished: 01 January 2002
Fig. 5 Retirement-for-Cause (RFC) inspection system probability of detection (POD) curves for various geometrical features. Source: Ref 17
More
Image
Schematic of the crack found by liquid penetrant inspection in the piece of...
Available to Purchase
in Fatigue Fracture of a C130 Aircraft Main Landing Gear Wheel Flange
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 5 Schematic of the crack found by liquid penetrant inspection in the piece of wheel that had remained intact. Note that the location of the crack in the flange radius is identical to that observed in the fracture piece.
More
Image
Diagram depicting ultrasonic inspection of the shell and location of the in...
Available to Purchase
in Corrosion Fatigue and Subsequent Rupture of a Yankee Dryer Roll on a Modified Paper Machine
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 3 Diagram depicting ultrasonic inspection of the shell and location of the indication.
More
Image
An on-site inspection and identification of replaced drive shafts identifie...
Available to PurchasePublished: 01 December 2019
Fig. 1 An on-site inspection and identification of replaced drive shafts identified 6 visually discernable designs among the 28 drive shafts inspected.
More
Image
Published: 01 December 2019
Fig. 6 Location where inspection of the fracture surface was conducted via SEM
More
Image
Photograph of magnetic-particle inspection of pipe with crack colonies typi...
Available to PurchasePublished: 30 August 2021
Fig. 26 Photograph of magnetic-particle inspection of pipe with crack colonies typical of stress-corrosion cracking (SCC)
More
Image
Wet fluorescent magnetic-particle inspection photograph of outside pipe sur...
Available to PurchasePublished: 30 August 2021
Fig. 31 Wet fluorescent magnetic-particle inspection photograph of outside pipe surface showing an SCC colony near the rupture area. Multiple similar colonies were observed both upstream and downstream of the rupture.
More
Image
Typical cracking found by fluorescent magnetic-particle inspection of the i...
Available to Purchase
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 79 Typical cracking found by fluorescent magnetic-particle inspection of the internal surface of a feedwater heater
More
1