Skip Nav Destination
Close Modal
Search Results for
Inconel 718
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 21 Search Results for
Inconel 718
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 46 Scanning electron micrographs of the fracture surfaces of Inconel 718 specimens tested at room temperature. (a) Δ K = 30 MPa m (27 ksi in. ), striation spacing ∼0.2 μm, and da / dN ∼ 0.1 μm/cycle. Arrow indicates direction of crack propagation. (b) Δ K = 14 MPa
More
Image
Published: 15 January 2021
Fig. 47 Scanning electron micrographs of the fracture surfaces of Inconel 718 specimens tested at room temperature. (a) Stress-intensity range (Δ K ) = 30 M P a m (27 ksi in .); striation spacing = ∼0.2 μm; and fatigue crack growth rate ( da / dN ) = ~0.1 μm/cycle. Arrow
More
Image
in Prevention of Machining-Related Failures
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 7 Surface characteristics of cast Inconel 718 (aged, 40 HRC) produced by electrical discharge machining (EDM). (a) Microstructure of recast layer 0.005 mm (0.0002 in.) thick generated during EDM finishing. Original magnification: 860×. (b) Microstructure of recast layer up to 0.05 mm
More
Image
in Failures Related to Metal Additive Manufacturing
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 15 Time-temperature-transformation diagram for Inconel 718. Adapted from Ref 37 . Copyright 1991 by The Minerals, Metals & Materials Society. Used with permission
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047010
EISBN: 978-1-62708-234-1
... including a maraging steel (18% Ni, grade 250), a vanadium-modified 4337 gun steel (4337V), H19 tool steel, and high-temperature alloys Rene 41, Inconel 718, and Udimet 630. All the alloys evaluated had been used in mortar tubes previously or were known to meet the estimated minimum yield strength...
Abstract
When bulging occurred in mortar tubes made of British I steel during elevated-temperature test firing, a test program was formulated to evaluate the high-temperature properties (at 540 to 650 deg C, or 1000 to 1200 deg F) of the British I steel and of several alternative alloys including a maraging steel (18% Ni, grade 250), a vanadium-modified 4337 gun steel (4337V), H19 tool steel, and high-temperature alloys Rene 41, Inconel 718, and Udimet 630. All the alloys evaluated had been used in mortar tubes previously or were known to meet the estimated minimum yield strength. The alloys fall in this order of decreasing strengths: Udimet 630, Inconel 718, Rene 41, H19 tool steel, British I steel, 4337V gun steel, and maraging steel. When cycled between room temperature and 540 to 650 deg C (1000 to 1200 deg F), only Udimet 630, Inconel 718, and Rene 41 retained yield strengths higher than the minimum. Also, these three alloys maintained high strengths over the tested range, whereas the others decreased in yield strength as cycling progressed. Analysis showed Inconel 718 was considered best suited for 81-mm mortar tubes, and widespread industrial use ensured its availability.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001268
EISBN: 978-1-62708-215-0
... Abstract A missile detached from a Navy fighter jet during a routine landing on an aircraft carrier deck because of a faulty missile launcher detent spring. Visual inspection of Inconel 718 detent spring assembly revealed that four of the nine spring leafs comprising the assembly were...
Abstract
A missile detached from a Navy fighter jet during a routine landing on an aircraft carrier deck because of a faulty missile launcher detent spring. Visual inspection of Inconel 718 detent spring assembly revealed that four of the nine spring leafs comprising the assembly were plastically deformed while two of the deformed leafs did not meet minimal hardness or tensile requirements. Liquid penetrant testing revealed no cracks or other surface discontinuities on the leaf springs. Material sectioned from the soft spring leafs was heat-treated according to specifications in the laboratory. The resultant increase in mechanical properties of the re-heat-treated material indicated that the original heat treatment was not performed correctly. The failure was attributed to improper heat treatment. Recommendations focused on more stringent quality control of the heat-treat operations.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001491
EISBN: 978-1-62708-217-4
...° around the circumference in a direction tangential to the nozzle surface. Two shots at each position covered both convergent and divergent sections. Unbonding was not observed between the nozzle liner, the MXSE-55 interlayer and the Inconel 718 nozzle shell. All circumferential cracks extended fully from...
Abstract
Two silica phenolic nozzle liners cracked during proof testing. The test consisted of pressuring the nozzles to 14.1 MPa (2050 psia) for 5 to 20 s. It was concluded that the failure was due to longitudinal cracking in the convergent exhaust-nozzle insulators, stemming from the use of silica phenolic tape produced from flawed materials that went undetected by the quality control tests, which at the time, assessed tape strength properties in the warp rather than the bias direction. Once the nozzle manufacturer and its suppliers identified the problem, they changed their quality control procedures and resumed production of nozzle liners with more tightly controlled fiber/fabric materials.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047621
EISBN: 978-1-62708-229-7
..., and flange and more skillful welding techniques to avoid undercutting and unfused interfaces. Arc welding Combustion chamber Flanges Gas turbine engines Pipe fitting Undercuts Welding defects Inconel 718 (Nickel-base superalloy) UNS N07718 Fatigue fracture Joining-related failures...
Abstract
The case and stiffener of an inner-combustion-chamber case assembly failed by completely fracturing circumferentially around the edge of a groove arc weld joining the case and stiffener to the flange. The assembly consisted of a cylindrical stiffener inserted into a cylindrical case that were both welded to a flange. The case, stiffener, flange, and weld deposit were all of nickel-base alloy 718. It was observed that a manual arc weld repair had been made along almost the entire circumference of the original weld. Investigation (visual inspection, 0.5x macrographs, and 10x etched with 2% chromic acid plus HCl views) supported the conclusions that failure was by fatigue from multiple origins caused by welding defects. Ultimate failure was by tensile overload of the sections partly separated by the fatigue cracks. Recommendations included correct fit-up of the case, stiffener, and flange and more skillful welding techniques to avoid undercutting and unfused interfaces.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001632
EISBN: 978-1-62708-234-1
... Radiation damage Inconel 718 UNS N07718 (Other, general, or unspecified) fracture Radiation - indirect failure Introduction High-power accelerator facilities must have provision for stopping the beam they produce following its use at targets where subnuclear particles are produced and used...
Abstract
A double-walled, hemispherical metal beam exit window made of alloy 718 developed a crack during service, leading to coolant leakage. The window had been exposed to radiation damage from 800 MeV protons and a cyclic stress from 600 MPa tensile to near zero induced by numerous temperature cycles calculated to be from 400 to 30 deg C (752 to 86 deg F). The window was activated to >200 Sv/h. It was determined through analysis using remote handling techniques and hot cells that the crack initiated near a spot weld used to affix thermocouples to the window surface. In addition to analysis of the crack, some of the irradiated material from the window was used to measure mechanical properties. Hot cell techniques for preparation of samples and testing were developed to determine true operating conditions of radiation, strain, and temperature.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... during grinding may not crack immediately. However, the martensitic regions often crack or spall under the stresses encountered under load in service ( Ref 12 ). Surface alterations generated during electrical discharge machining (EDM) metal alloys, such as cast Inconel 718 (aged to a hardness of 40...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... in the build. The types of microstructures also may vary. For example, the AM microstructure of Ti-6Al-4V, the most popular titanium alloy, is similar to the wrought product. In contrast, the AM microstructure of the nickel-base superalloy Inconel 718, a popular superalloy, appears to be a cross between...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001827
EISBN: 978-1-62708-241-9
...-cast cobalt-based superalloys. Cobalt-based superalloys such as FSX 414 show good resistance to hot corrosion and good weldability. Iron–nickel-based superalloys, e.g., Inconel 718 are typically used for disks, and lower temperature blades, vanes, and shrouds. Stainless steels, both austenitic...
Abstract
Gas turbines and other types of combustion turbomachinery are susceptible to hot corrosion at elevated temperatures. Two such cases resulting in the failure of a gas turbine component were investigated to learn more about the hot corrosion process and the underlying failure mechanisms. Each component was analyzed using optical and scanning electron microscopy, energy dispersive spectroscopy, mechanical testing, and nondestructive techniques. The results of the investigation provide insights on the influence of temperature, composition, and microstructure and the contributing effects of high-temperature oxidation on the hot corrosion process. Preventative measures are also discussed.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
Abstract
This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration, type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
...: Perforation of a Nickel-Base Alloy Kiln <xref rid="a0006787-ref28" ref-type="bibr">(Ref 28)</xref> Spent charcoal from water utilities is regenerated in a 7.6 m (25 ft) long Inconel 601 (N06601) kiln with a 1 m (3 ft) inside diameter and a 6 mm (0.25 in.) wall thickness. The kiln is welded using Inconel...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... of a nickel weld may be anodic to the wrought parent metals. The combination of their passive surface with their inherent resistance places nickel-chromium alloys such as Inconel alloy 600 and Hastelloy alloy C-276 in more noble positions in the traditional galvanic series. In chloride-bearing solutions...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
1