Skip Nav Destination
Close Modal
By
R.J. Gommans, K.F. Verheesen, J.H. Heerings
By
Brian A. Baker
By
S.K. Srivastava, M.V. Katarki
By
Ronald Jeffrey Dunning
By
Richard L. Colwell
By
Tito Luiz da Silveira, Francisco Solano Moreira, Miriam Conçeicão Garcia Chavez, Iain Le May
By
Moavinul Islam
By
Scott R. Gertler
By
Paresh Haribhakti, P.B. Joshi
By
Robert B. Pond, Jr., David A. Shifler
By
David A. Shifler, Robert B. Pond, Jr.
Search Results for
Incoloy 800
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 25
Search Results for Incoloy 800
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Failure of an Incoloy 800 Piping System
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046991
EISBN: 978-1-62708-234-1
... Abstract The outlet-piping system of a steam-reformer unit failed by extensive cracking at four weld locations. The welded system consisted of Incoloy 800 (Fe-32Ni-21Cr-0.05C) pipe and fittings. The exterior surfaces of the system were insulated with rock wool that did not contain...
Abstract
The outlet-piping system of a steam-reformer unit failed by extensive cracking at four weld locations. The welded system consisted of Incoloy 800 (Fe-32Ni-21Cr-0.05C) pipe and fittings. The exterior surfaces of the system were insulated with rock wool that did not contain weatherproofing. On-site visual examination and magnetic testing indicated severe external corrosion of most of the piping. The system showed extensive cracking in weld HAZ. One specimen indicated that corrosion extended to a depth of 3.2 mm and cracks were seen at the edge of the cover bead and in the HAZ of the weld. Metallographic examination showed that cracking was intergranular and that adjacent grain boundaries had undergone deep intergranular attack. Examination at higher magnification revealed heavy carbide precipitation, primarily at grain boundaries, indicating that the alloy had been sensitized, which resulted from heating during welding. Electron probe x-ray microanalysis showed the outside surface of the tube did not have the protective chromium oxide scale normally found on Incoloy 800. The inside surface of the tube had a thin chromium oxide protective scale. This evidence supported the conclusions that the deep oxidation greatly decreased the strength of the weld HAZ and cracking followed.
Image
Schematic of Incoloy 800 outlet-piping system for a steam-reformer unit sho...
Available to Purchase
in Failure of an Incoloy 800 Piping System
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 1 Schematic of Incoloy 800 outlet-piping system for a steam-reformer unit showing the four welds that failed by cracking. Dimensions given in inches
More
Book Chapter
Oxidation Cracking and Residual Creep Life of an Incoloy 800H Bottom Manifold in a Steam Reformer at 800 °C
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001738
EISBN: 978-1-62708-220-4
... discussion is made of Incoloy 800H; the metal temperature is about 800 °C (1475°F) at an internal gas pressure of 3.1 MPa (450 psi). The plant was taken into operation in 1969. In 1976 the bottom manifold showed severe bulging (up to 20% diametrical expansion) and creep damage. The cause of the damage...
Abstract
During a planned shut-down in 1990 it appeared that the bottom manifold parts made of wrought Incoloy 800H had undergone diametrical expansion of up to 2% due to creep. Further, cracking at the outer diam was found. It was decided to replace these parts. Microscopical investigations showed that the cracking could not be caused by creep. It was found that the cracking was confined to a 4-mm deep coarse-grained zone (ASTM 0-1) at the outer diameter. The cracking appeared to be caused by strain-induced intergranular oxidation. When the cracks reached the fine-grained material, the oxidation-cracks stopped. To determine the residual creep life of the sound (non-cracked) bottom manifold material, iso-stress creep tests were performed. It was found that tertiary creep started at 7% strain. The time-to-rupture was greater than 100,000 h. It was concluded that the bottom manifold (and thus the furnace) could be used safely during the foreseen production period.
Image
Creep rate of Incoloy 800H as a function of stress at a temperature of 800°...
Available to Purchase
in Oxidation Cracking and Residual Creep Life of an Incoloy 800H Bottom Manifold in a Steam Reformer at 800 °C
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 8 Creep rate of Incoloy 800H as a function of stress at a temperature of 800°C. Data for power-law creep are taken from manufacturers (Inco, Sandvik) and from free literature. These data are put into a Larson-Miller equation by regression analysis. Data for diffusional creep are taken
More
Book Chapter
Heat Exchanger Corrosion in a Chlorinated Solvent Incinerator
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001046
EISBN: 978-1-62708-214-3
... gases to shunt across the preheater/exchanger. Metallographic examination of the plates showed that accelerated internal oxidation had been the cause of failure. Corrosion racks of candidate alloys (types 304, 309, and 316 stainless steels, Inconel 600, Inconel 625, Incoloy 800, Incoloy 825, and Inco...
Abstract
The thin plates within a type 309 stainless steel chlorinated solvent combustion preheater/heat exchanger designed to process fumes from a solvent coating process showed severe corrosion within 6 months of service. Within a year corrosion had produced holes in the plates, allowing gases to shunt across the preheater/exchanger. Metallographic examination of the plates showed that accelerated internal oxidation had been the cause of failure. Corrosion racks of candidate alloys (types 304, 309, and 316 stainless steels, Inconel 600, Inconel 625, Incoloy 800, Incoloy 825, and Inco alloy C-276) were placed directly in the hot gas stream, containing HCl and Cl2, for in situ testing. Results of this investigation showed that nickel-chromium corrosion-resistant alloys, such as Inconel 600, Inconel 625, and Inco alloy C-276, performed well in this environment. Laboratory testing of the same alloys, along with Inconel alloys 601, 617, and 690 and stainless steel type 347 was also conducted in a simulated waste incinerator nitrogen atmosphere containing 10% Co2, 9% O2, 4% HCl, 130 ppm HBr and 100 ppm SO2 at 595, 705, 815, and 925 deg C (1100, 1300,1500, and 1700 deg F). The tests confirmed the suitability of the nickel-chromium alloys for such an environment. Inconel 625 was selected for fabrication of a new preheater/exchanger.
Book Chapter
Failure Analysis of Fire Tube Sleeve of Heater Treater
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001818
EISBN: 978-1-62708-241-9
... analysis, mechanical property testing, stereomicroscopy, and metallographic examination. The fire sleeves are fabricated from 3-mm thick plate made of Incoloy 800 rolled into 540-mm diam sections welded along the seam. Three such sections are joined together by circumferential welds to form a single 2.8 m...
Abstract
A sleeve-shaped fire shield that operates inside one of two burner trains in an oil and gas processing unit ruptured after 15 y of service. A detailed analysis was conducted to determine how and why the sleeve failed. The investigation included visual inspection, chemical and gas analysis, mechanical property testing, stereomicroscopy, and metallographic examination. The fire sleeves are fabricated from 3-mm thick plate made of Incoloy 800 rolled into 540-mm diam sections welded along the seam. Three such sections are joined together by circumferential welds to form a single 2.8 m sleeve. The findings from the investigation indicated that internal oxidation corrosion, driven by high temperatures, was the primary cause of failure. Prolonged exposure to temperatures up to 760 °C resulted in sensitization of the material, making it vulnerable to grain boundary attack. This led to significant deterioration of the grain boundaries, causing extensive grain loss (grain dropping) and the subsequent thinning of sleeve walls. Prior to failure, some portions of the sleeve were only 1.6 mm thick, nearly half their original thickness.
Book Chapter
Stress-Corrosion Cracking of Type 316 Stainless Steel Piping
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091617
EISBN: 978-1-62708-220-4
.... Recommendations included eliminating the chlorides from the system, maintaining the temperature of the outlet stream above the dewpoint at all times, or that replacing the type 316 stainless steel with an alloy such as Incoloy 800 that is more resistant to chloride attack. Ammonia Chemical processing...
Abstract
A 680,000 kg (750 ton) per day ammonia unit was shut down following a fire near the outlet of the waste heat exchanger. The fire had resulted from leakage of ammonia from the type 316 stainless steel outlet piping. The outlet piping immediately downstream from the waste heat exchanger consisted of a flange made from a casting, and a reducing cone, a short length of pipe, and a 90 deg elbow, all made of 13 mm thick plate. A liner wrapped with insulation was welded to the smaller end of the reducing cone. All of the piping up to the flange was wrapped with insulation. Investigation (visual inspection, 10x unetched images, liquid-penetrant inspection, and chemical analysis of the insulation) supported the conclusion that the failure occurred in the area of the flange-to-cone weld by SCC as the result of aqueous chlorides leached from the insulation around the liner by condensate. Recommendations included eliminating the chlorides from the system, maintaining the temperature of the outlet stream above the dewpoint at all times, or that replacing the type 316 stainless steel with an alloy such as Incoloy 800 that is more resistant to chloride attack.
Book Chapter
Corrosive Attack of Stainless Steel Welds in Hot Brine
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047606
EISBN: 978-1-62708-228-0
..., the substitution of a more corrosion-resistant alloy, such as Incoloy 800 or 825, may be necessary. Activation Butt welds Pipes Residual stress Weld metal 316L UNS S31603 Stress-corrosion cracking Pitting corrosion Joining-related failures Type 316L stainless steel pipes carrying brine at 120...
Abstract
Type 316L stainless steel pipes carrying brine at 120 deg C (250 deg F) and at a pH of about 7, failed by perforation at or near circumferential butt-weld seams. The failure was examined optically and radiographically in the field. Specimens were removed and examined metallographically and with a SEM in the laboratory. The examinations revealed a combination of failure mechanisms. The pitting failure of the welds was attributed to localized attack of an activated surface, in which anodic pits corroded rapidly. Additionally, SCC driven by residual welding stresses occurred in the base metal adjacent to the welds. Use of highly stressed austenitic stainless steels in high-chloride environments having a temperature above 65 deg C (150 deg F) should be discouraged. Solution annealing or shot peening to reduce residual stresses may be advisable. If heat treatment is not feasible after welding, the substitution of a more corrosion-resistant alloy, such as Incoloy 800 or 825, may be necessary.
Book Chapter
Radiographic Inspection for Creep Fissures in Reformer-Furnace Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0060144
EISBN: 978-1-62708-234-1
... Abstract Two steam-methane reformer furnaces were subjected to short-time heat excursions because of a power outage, which resulted in creep bulging in the Incoloy 800 outlet pigtails, requiring complete replacement. Each furnace had three cells, consisting of 112 vertical tubes per cell, each...
Abstract
Two steam-methane reformer furnaces were subjected to short-time heat excursions because of a power outage, which resulted in creep bulging in the Incoloy 800 outlet pigtails, requiring complete replacement. Each furnace had three cells, consisting of 112 vertical tubes per cell, each filled with a nickel catalyst. The tubes were centrifugally cast from ASTM A297, grade HK-40 (Fe-25Cr-20Ni-0.40C), heat-resistant alloy. The tube was concluded after metallurgical inspection to have failed from creep rupture (i.e., stress rupture). A project for detecting midwall creep fissuring was instigated as a result of the failure. It was concluded after laboratory radiography and macroexamination that if the fissure were large enough to show on a radiograph, either with or without the catalyst, the tube could be expected to fail within one year. The set up for in-service radiograph examination was described. The tubes of the furnace were radiographed during shut down and twenty-four tubes in the first furnace and 53 in the second furnace showed significant fissuring. Although, radiography was concluded to be a practical technique to provide advance information, it was limited to detecting fissures caused by third-stage creep in tubes because of the cost involved in removing the catalysts.
Image
Section through an automatic gas tungsten arc weld containing voids caused ...
Available to PurchasePublished: 01 January 2002
Fig. 20 Section through an automatic gas tungsten arc weld containing voids caused by incomplete fusion. (a) Base metal at left is Incoloy 800 nickel alloy, that at right is 2.25Cr-1.0Mo alloy steel. Filler metal was ERNiCr-3, used with cold wire feed. Macrograph. 1×. (b) Micrograph
More
Book Chapter
Failure of a Heat-Resistant Sinter Belt
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001104
EISBN: 978-1-62708-214-3
... Sulfurization Nicrofer 3718 Incoloy 800 UNS N08800 Nicrofer 3220-H Incoloy 800H UNS N08810 High-temperature corrosion and oxidation Background A sinter belt used in a sinter furnace of the curing of nickel briquettes stretched and fractured after only 6 months of service. Applications...
Abstract
A Nicrofer 3718 sinter belt used in a sinter furnace operated at 965 deg C (1770 deg F) for the curing of nickel briquettes stretched and fractured after only 6 months in service. Macrofractographic, metallographic, and chemical analyses of several broken links of the woven belt and an unused section of new wire showed that the fracture resulted from sulfur attack and overheating during service. It was recommended that the sinter belt material be changed to Nicrofer 3220-H (alloy 800H).
Book Chapter
Gaseous Corrosion of a Heat-Resistant Alloy (Metal Dusting)
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001107
EISBN: 978-1-62708-214-3
... corrosion Liners, corrosion Incoloy 800 UNS N08810 High-temperature corrosion and oxidation Background A 150 mm (6 in.) diam, 1.6 mm (0.065 in.) thick alloy 800 liner from an internal bypass line in a hydrogen reformer was removed from a waste heat boiler because of severe metal loss. Visual...
Abstract
A 150 mm (6 in.) diam, 1.6 mm (0.065 in.) thick alloy 800 1iner from an internal bypass line in a hydrogen reformer was removed from a waste heat boiler because of severe metal loss. Visual and metallographic examinations of the liner indicated severe metal wastage on the inner surface, along with sooty residue. Patterns similar to those associated with erosion/corrosion damage were observed. Microstructural examination of wasted areas revealed a bulk matrix composed of massive carbides, indicating that gross carburization and metal dusting had occurred. X-ray diffraction analysis showed that the carbides were primarily chromium based (Cr 23 C 7 and Cr 7 C 3 ). The sooty substance was identified as graphite. Wasted areas were ferromagnetic and the degree of ferromagnetism was directly related to the degree of wastage. Three actions were recommended: (1) inspection of the waste heat boiler to determine the extent of metal damage in other areas by measuring the degree of ferromagnetism, (2) replacement of metal determined to be magnetic, and (3) closer monitoring of temperatures in the region of the reformer furnace outlet.
Image
General structure of Incoloy 800H in the collector after 4,500 h of operati...
Available to Purchase
in Metallographic Studies of a Reformer Tube Failure Due to Thermal Fatigue
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 3 General structure of Incoloy 800H in the collector after 4,500 h of operation at 800–820 C. Unetched.
More
Book Chapter
Metallographic Studies of a Reformer Tube Failure Due to Thermal Fatigue
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001675
EISBN: 978-1-62708-220-4
... with the balance Fe. The general structure is shown in Figure 3 , typical of Incoloy 800H aged at 800 C. The average grain size was 150 um and no abnormal presence of second phases was observed. The allowable stresses used in this class of equipment are low, to permit a useful life of 100,000 h. At this stress...
Abstract
The failure of a reformer tube furnace manifold has been examined using metallography. It has been shown that the cause of failure was thermal fatigue; the damage was characterized by the presence of voids produced by creep mechanisms operating during the high temperature cycle under high local stress. The study indicates that standard metallographic procedures can be used to identify failure modes in high temperature petrochemical plants.
Book Chapter
Thermal Fatigue Failure of Alloy UNS NO8800 Steam Superheating Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001346
EISBN: 978-1-62708-215-0
... of the fatigue cracks. Hydrocracker charge heater Steam superheating coils Incoloy 800 UNS N08800 Thermal fatigue fracture Background Several tubes of the steam superheating (SSH) coils of two hydrocracker (HCR) charge heater units in a refinery failed prematurely in service. The tubes were...
Abstract
Alloy UNS N08800 (Alloy 800) tubes of the steam superheating coils of two hydrocracker charge heaters in a refinery failed prematurely in service. Failure analysis of the tubes indicated that the failures could be attributed to thermal fatigue as a result of temperature fluctuations as well as restriction to movement. Fatigue cracks initiated intergranularly from both the flue gas and steam sides. Enhanced general and grain boundary oxidation coupled with age hardening of the alloy led to the formation of incipient intergranular cracks that acted as sites for the initiation of the fatigue cracks.
Book Chapter
Cracking of Inconel 800H in a Steam Methane Reformer Furnace
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001328
EISBN: 978-1-62708-215-0
.... Marketing Brochure , Fired Heater Technology Corporation , Liberty Corner, NJ. 3. “Incoloy Alloys 800 and 800HT,” Inco Alloy International, Inc. , 1986 , p 17 . 4. “Superalloys,” Metals Handbook, Desk Edition American Society for Metals , Metals Park, OH , 1985 , p 16 – 13...
Abstract
During 5.7 years of service, dye penetrant inspection of Inconel 800H pigtail connections regularly showed cracks at weld toes. Weld repairs were not able to prevent reoccurrence but often aggravated the condition. Samples containing small, but detectable, reducer-to-pigtail cracks showed intergranular cracks originating at weld toes and filled with oxidation product, which precluded determination of the cracking mechanism. All weldments exhibited high degrees of secondary precipitates, with original fabrication welds exhibiting higher apparent levels than repair welds. SEM/EDS analysis showed base metal grain boundary precipitates to be primarily chromium carbides, but some titanium carbides were also observed. Failure was believed to result from the synergism of thermally driven tube distortion, which resulted in over-stress, and from the intergranular oxidation products and intergranular carbides which contributed to cracking. It was recommended that stresses be reduced and /or that materials and components be changed. Refinements in welding procedures and implementation of preweld/postweld heat treatments were recommended also.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001341
EISBN: 978-1-62708-215-0
... temperature, replacing the Schedule 40 100 deg bends with Schedule 80 pipe, and solution annealing the pipe after bending. Boiler tubes Brittle fracture Contaminants Creep (materials) Ductility Intergranular fracture Lead (metal), Impurities Mechanical properties SB407 Incoloy 800H UNS N08810...
Abstract
An SB407 alloy 800H tube failed at a 100 deg bend shortly after startup of a new steam superheater. Three bends failed and one bend remote from the failure area was examined. Visual examination showed that the fracture started on the outside surface along the inside radius of the bend and propagated in a brittle, intergranular fashion. Chemical analysis revealed that lead contamination was a significant factor in the failure and phosphorus may have contributed. The localized nature of the cracks and minimum secondary cracking suggested a distinct, synergistic effect of applied tensile stress with the contamination. Stress analysis found that stress alone was not enough to cause failure; however the operating stresses in the 100 deg bends were higher than at most other locations in the superheater Reduced creep ductility may be another possible cause of failure. Remedial actions included reducing the tube temperature, replacing the Schedule 40 100 deg bends with Schedule 80 pipe, and solution annealing the pipe after bending.
Book Chapter
Failure of Boilers and Related Equipment
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
... 0.1 0.5 0.5 22.0 52.0 9.0 … … … 1.5Fe, 12.5Co, 0.3Ti, 1.2Al, 0.2Cu Proprietary grade (d) Incoloy 800 0.08 0.5 0.8 21.0 32.5 … … … 46.0 0.4Al, 0.4Ti, 0.4Cu Proprietary grade (e) HR6W 0.08 0.4 1.2 23.0 43.0 … 6.0 0.18 bal 0.08Ti, 0.003B Proprietary grade (f...
Abstract
Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general procedure and techniques followed in failure investigation of boilers and related equipment are discussed. The article is framed with an objective to provide systematic information on various damage mechanisms leading to the failure of boiler tubes, headers, and drums, supplemented by representative case studies for a greater understanding of the respective damage mechanism.
Book Chapter
High-Temperature Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
..., with a penetration of 0.2 to 0.8 mm (0.008 to 0.031 in.) in 50 to 55 days, in nickel alloys at 650 to 700 °C (1200 to 1300 °F). Nickel-chromium alloys containing titanium, niobium, and aluminum are better than basic nickel-chromium alloys in carbon dioxide atmospheres at 700 to 800 °C (1300 to 1470 °F). The alumina...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Book Chapter
High-Temperature Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... exposed at 650 to 700 °C (1200 to 1290 °F). Nickel-chromium alloys containing titanium, niobium, and aluminum are better than basic nickel-chromium alloys exposed in carbon dioxide atmospheres at 700 to 800 °C (1290 to 1470 °F). The alumina scale-forming alloys appear to be much more resistant...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
1