1-20 of 448 Search Results for

Impact

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047307
EISBN: 978-1-62708-223-5
...Abstract Abstract An impact breaker bar showed signs of rapid wear. The nominal composition of this chromium alloy cast iron was Fe-2.75C-0.75Mn-0.5Si-0.5Ni-19.5Cr-1.1Mo. The measured hardness of this bar was 450 to 500 HRB. The desired hardness for this material after air hardening is 600...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046028
EISBN: 978-1-62708-235-8
...Abstract Abstract The 8620 steel latch tip, carburized and then induction hardened to a minimum surface hardness of 62 HRC, on the main-clutch stop arm on a business machine fractured during normal operation when the latch tip was subjected to intermittent impact loading. Fractographic...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
...Abstract Abstract Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
...Abstract Abstract This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003566
EISBN: 978-1-62708-180-1
... contact. Hence, the spalling of gear teeth and bearing materials is also known as fatigue wear or rolling contact fatigue. Spalling damage on a surface can also occur from impact events. For example, the spalling of striking/struck tools is of considerable interest from the engineering, economic...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
...Abstract Abstract Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001840
EISBN: 978-1-62708-241-9
...Abstract Abstract Explosive cladding is a viable method for cladding different materials together, but the complicated behavior of materials under ballistic impacts raises the probability of interfacial shear failure. To better understand the relationship between impact energy and interfacial...
Image
Published: 01 January 2002
Fig. 1 Diagram of impact wear modes. (a) normal impact; (b) compound impact (with sliding); and (c) compound impact (tangential contact). v , velocity More
Image
Published: 01 January 2002
Fig. 21 Impact fracture origin in glass caused by impact damage from a 100 μm (4 mil) SiC particle. Specimen was tilted in the SEM to reveal original surface (left) and fracture surface (right). SEM; picture width ∼300 μm. Source: Ref 9 More
Image
Published: 01 January 2002
Fig. 22 Impact fracture origin in glass caused by impact damage from a 100 μm (4 mil) SiC particle. Specimen was tilted in the SEM. Original surface is at left, fracture surface at right. SEM; picture width ∼200 μm. Source: Ref 9 More
Image
Published: 01 January 2002
Fig. 48 Correlation between Charpy impact energy, lateral expansion, and percentage shear fracture for construction-grade steels. Courtesy of FTI/Anamet Laboratory More
Image
Published: 01 January 2002
Fig. 29 Low-magnification view of fracture origin area of polycarbonate impact test specimen. Curved Wallner lines, formed by interaction between the rapidly progressing crack front and dynamic stress waves, are reminiscent of beach marks but do not indicate progressive fatigue fracture. Source More
Image
Published: 01 January 2002
Fig. 19 Fracture initiation region of polycarbonate specimen after Izod impact showing mirror zone and mist region. 27× More
Image
Published: 01 January 2002
Fig. 21 Hackle region in final ligament of polycarbonate specimen after Izod impact. 14× More
Image
Published: 01 January 2002
Fig. 20 Impact site on a glass surface made by a 100 μm (4 mil) particle of SiC. SEM; picture width ∼200 μm. Source: Ref 6 More
Image
Published: 01 January 2002
Fig. 23 Hertzian impact site in glass. Specimen was tilted in the SEM to reveal original surface (left) and fracture surface (right). SEM; picture width ∼200 μm. Source: Ref 9 More
Image
Published: 01 January 2002
Fig. 7 Effect of impact velocity on erosive wear. Source: Ref 12 More
Image
Published: 01 January 2002
Fig. 4 Schematic diagrams of the different mechanisms of impact wear. Source: Ref 11 More
Image
Published: 01 January 2002
Fig. 5 Evolution of impact wear mechanisms as conditions in a contact become more severe More
Image
Published: 01 January 2002
Fig. 8 Height change vs. number of compound impact cycles for aluminium 2011 T3 specimens tested against 17-4 PH stainless steel counterfaces with varying impact stresses (sliding velocity 5.33 m/s). Source: Ref 5 More