Skip Nav Destination
Close Modal
Search Results for
Impact
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 471 Search Results for
Impact
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047307
EISBN: 978-1-62708-223-5
... Abstract An impact breaker bar showed signs of rapid wear. The nominal composition of this chromium alloy cast iron was Fe-2.75C-0.75Mn-0.5Si-0.5Ni-19.5Cr-1.1Mo. The measured hardness of this bar was 450 to 500 HRB. The desired hardness for this material after air hardening is 600 to 650 HRB...
Abstract
An impact breaker bar showed signs of rapid wear. The nominal composition of this chromium alloy cast iron was Fe-2.75C-0.75Mn-0.5Si-0.5Ni-19.5Cr-1.1Mo. The measured hardness of this bar was 450 to 500 HRB. The desired hardness for this material after air hardening is 600 to 650 HRB. The microstructure consisted of eutectic chromium carbides (Cr7C3) in a matrix of retained austenite and martensite intermingled with secondary carbides. Analysis (visual inspection and 500x view of sections etched with Marble's reagent) supported the conclusion that the low hardness resulted from an excessive amount of retained austenite. This caused reduced wear resistance and thus rapid wear in service. Recommendations included avoiding an excessive austenitizing temperature and excessive cooling rates from the austenitizing temperature and controlling the chemical composition to avoid excessive hardenability for the section size involved.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
... Abstract This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear...
Abstract
This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear apparatus. Most mechanical components continue to be functional beyond the zero wear limit, and their usefulness is normally connected with the loss of a specific depth of material. The article reviews the zero impact wear model and some measurable impact wear models. It presents a case study illustrating the impact of wear failure on automotive engine inlet valves and seat inserts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003566
EISBN: 978-1-62708-180-1
... contact. Hence, the spalling of gear teeth and bearing materials is also known as fatigue wear or rolling contact fatigue. Spalling damage on a surface can also occur from impact events. For example, the spalling of striking/struck tools is of considerable interest from the engineering, economic...
Abstract
This article briefly reviews the analysis methods for spalling of striking tools with emphasis on field tests conducted by A.H. Burn and on the laboratory tests of H.O. McIntire and G.K. Manning and of J.W. Lodge. It focuses on the metallography and fractography of spalling. The macrostructure and microstructure of spall cavities are described, along with some aspects of the numerous specifications for striking/struck tools. The article also describes the availability of spall-resistant metals and the safety aspects of striking/struck tools in railway applications.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... Abstract Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046028
EISBN: 978-1-62708-235-8
... Abstract The 8620 steel latch tip, carburized and then induction hardened to a minimum surface hardness of 62 HRC, on the main-clutch stop arm on a business machine fractured during normal operation when the latch tip was subjected to intermittent impact loading. Fractographic examination 9x...
Abstract
The 8620 steel latch tip, carburized and then induction hardened to a minimum surface hardness of 62 HRC, on the main-clutch stop arm on a business machine fractured during normal operation when the latch tip was subjected to intermittent impact loading. Fractographic examination 9x showed a brittle appearance at the fractures. Micrograph examination of an etched section disclosed several small cracks. Fracture of the parts may have occurred through similar cracks. Also observed was a burned layer approximately 0.075 mm (0.003 in.) deep on the latch surface, and hardness at a depth of 0.025 mm (0.001 in.) in this layer was 52 HRC (a minimum of 55 HRC was specified). Thus, the failure was caused by brittle fracture in the hardness-transition zone as the result of excessive impact loading. The burned layer indicated that the cracks had been caused by improper grinding after hardening. Redesign was recommended to include reinforcing the backing web of the tip, increasing the radius at the relief step to 1.5 x 0.5 mm (0.06 x 0.02 in.), the use of proper grinding techniques, and a requirement that the hardened zone extend a minimum of 1.5 mm (0.06 in.) beyond the step.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006919
EISBN: 978-1-62708-395-9
... Fig. 29 Comparison of predicted and measured loads during the low-temperature impact of cracked specimens Fig. 30 Comparison of low-temperature impact performance in cracked and uncracked specimens; −50 °C (−60 °F). P , pressure; W , width Fig. 31 Undamped load-time signals...
Abstract
This article reviews the impact response of plastic components and the various methods used to evaluate it.. It describes the effects of loading rate on polymer deformation and the influence of temperature and strain rate on failure mode. It discusses the advantages and limitations of standard impact tests, the use of puncture tests for assessing material behavior under extreme strain, and the application of fracture mechanics for analyzing impact failures. It also develops and demonstrates the theory involved in the design and analysis of thin-walled, injection-molded plastic components.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
... Abstract Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear...
Abstract
Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear situations, the bodies tend to be large and contact in a well-defined location in a controlled way, unlike erosion where the eroding particles are small and interact randomly with the target surface. This article describes some generic features and modes of impact wear of metals, ceramics, and polymers. It discusses the processes involved in testing and modeling of impact wear, and includes two case studies.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001840
EISBN: 978-1-62708-241-9
... (10%) 0.9 3300 1230 The studying cladding parameters Table 3 The studying cladding parameters Samples Load ratio, R Stand-off distance, mm Explosive thickness, mm Detonation velocity, m/s Impact velocity, m/s Impact energy, kJ No. 1 1 4 28 2280 547 56.82...
Abstract
Explosive cladding is a viable method for cladding different materials together, but the complicated behavior of materials under ballistic impacts raises the probability of interfacial shear failure. To better understand the relationship between impact energy and interfacial shear, investigators conducted an extensive study on the shear strength of explosively cladded Inconel 625 and plain carbon steel samples. They found that by increasing impact energy, the adhesion strength of the resulting cladding can be improved. Beyond a certain point, however, additional impact energy reduces shear strength significantly, causing the cladding process to fail. The findings reveal the decisive role of plastic strain localization and the associated development of microcracks in cladding failures. An attempt is thus made to determine the optimum cladding parameters for the materials of interest.
Image
in Fractured Suspension Bar
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Image
in Failure Analysis of a Crude Oil Storage Tank
> ASM Failure Analysis Case Histories: Oil and Gas Production Equipment
Published: 01 June 2019
Fig. 5 Charpy V-notch impact energy data for pad and shell plate (mean values).
More
Image
in Evaluation of the Vent Header Crack at Edwin I. Hatch Unit #2 Nuclear Power Station
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 7 Fractograph of impact specimen #8 (−60deg. F; 50% cleavage, 50% ductile).
More
Image
in Evaluation of the Vent Header Crack at Edwin I. Hatch Unit #2 Nuclear Power Station
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 8 Plot of the results of the charpy impact tests performed on the Hatch #2 Vent Header Pipe.
More
Image
Published: 01 June 2019
Fig. 3 Failure sequence: (a) bolts fail; (b) blade 1 detaches; (c) impact between blades 1 and 2; (d) tip of blade 2 detaches and hits ground; (e) blade 1 impacts on ground, and parts of blade 2 detach; (f) surface material from blade 2 blown back by wind
More
Image
in Metallographic Studies of the U.S.S. Arizona
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 11 Charpy impact results plotted as temperature vs. energy absorbed, % shear failure and % contraction for longitudinal steel samples taken from the mainmast of the U.S.S. Arizona.
More
Image
in Metallographic Studies of the U.S.S. Arizona
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 12 Charpy impact energy versus temperature for longitudinal specimens from U.S.S. Arizona, HMS Titanic, and A-36 steels.
More
Image
in An Investigative Analysis of the Properties of Severely Segregated A441 Bridge Steel
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 4 Charpy impact energy plotted versus temperature for banded and non-banded cores.
More
Image
in Failure Investigations of PH 13-8 Mo Aircraft Components
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 18 Cleavage features of a piece of PH 13-8 Mo impact tested at liquid nitrogen temperature.
More
Image
Published: 01 June 2019
Fig. 6 Brittle cleavage fracture surface on a notched bar impact test specimen from the broken eyebolt. Scanning electron micrograph. 500 ×
More
Image
Published: 01 June 2019
Fig. 7 Microstructure (with cleavage crack) of an aged notched bar impact test specimen. Normalized at 900° C, 10% deformed and aged 1 2 h at 250° C. 500 ×
More
Image
in Solving an Aluminum Bracket Failure
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 5 On impact sample, white arrows point out intermetallics and dark arrows indicate grain boundary melting. Magnification 840 times.
More
1