Skip Nav Destination
Close Modal
Search Results for
I-beams
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 111 Search Results for
I-beams
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in An Analysis of Six Fatigue Failures in Cranes
> ASM Failure Analysis Case Histories: Material Handling Equipment
Published: 01 June 2019
Fig. 4 A: Crane ran on rails supported by I-beams. B: Appearance of I-beam crack. C: Evidence of fatigue striations.
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001112
EISBN: 978-1-62708-214-3
... Abstract An I-beam of IS-226 specification—I-section dimensions of 450 x l50 x 10 mm (17.7 x 5.9 x 0.4 in.) and a length of 12.41 m (40.7ft)—was flame cut into two section in an open yard near these a coast under normal weather conditions. After approximately 112h, the shorter section of he I...
Abstract
An I-beam of IS-226 specification—I-section dimensions of 450 x l50 x 10 mm (17.7 x 5.9 x 0.4 in.) and a length of 12.41 m (40.7ft)—was flame cut into two section in an open yard near these a coast under normal weather conditions. After approximately 112h, the shorter section of he I-beam split catastrophically along the entire length through the web. Detailed investigation revealed segregation of high levels of carbon, sulfur and phosphorus in the middle of the web and high residual stresses attributed to rolling during fabrication. Flame cutting caused a change in the distribution of the residual stresses, which, aided by low fracture toughness due to the poor quality of the beam, resulted in failure. It was recommended that segregation be avoided in cast ingots used for I-beam manufacture by implementing a better quality-control procedure.
Image
in Arizona Mine Ore Conveyor Bridge Collapse
> ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment
Published: 01 June 2019
Image
in Arizona Mine Ore Conveyor Bridge Collapse
> ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment
Published: 01 June 2019
Image
Published: 01 December 1992
Image
Published: 01 December 1992
Image
Published: 01 December 1992
Image
Published: 01 December 1992
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047521
EISBN: 978-1-62708-218-1
... Abstract A supplementary axle, which was used as an extension to a highway-trailer tractor to increase its load-bearing capacity, failed in service. The rolled steel channel extensions that secured the axle assembly to the tractor main-frame I-beams fractured transversely, with the crack...
Abstract
A supplementary axle, which was used as an extension to a highway-trailer tractor to increase its load-bearing capacity, failed in service. The rolled steel channel extensions that secured the axle assembly to the tractor main-frame I-beams fractured transversely, with the crack in each instance initiating at a weld that joined the edge of the lower flange to the support bracket casting. The cracks propagated through the flange on each side until the effective cross-sectional area had been reduced sufficiently to bring about sudden and complete fracture of the remaining web and upper flange. Fatigue fracture was caused by a combination of high bending stresses in the bottom flanges of the channels due to the heavy load being carried, concentration of stresses due to the rapid change in section modulus of the channel at its point of attachment to the support-bracket casting, and brittleness of the high-hardness HAZ of the weld associated with the abnormally high carbon content in the central part of the channel. Welding of channel edges contributed to harmful gradients in section moduli and should be avoided in future assemblies.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047148
EISBN: 978-1-62708-235-8
... Abstract A connecting rod (forged from 15B41 steel and heat treated to a hardness of 29 to 35 HRC) from a truck engine failed after 73,000 Km (45,300 mi) of service. A piece of the I-beam sidewall of the rod, about 6.4 cm (2 in.) long, was missing when the connecting rod arrived at a laboratory...
Abstract
A connecting rod (forged from 15B41 steel and heat treated to a hardness of 29 to 35 HRC) from a truck engine failed after 73,000 Km (45,300 mi) of service. A piece of the I-beam sidewall of the rod, about 6.4 cm (2 in.) long, was missing when the connecting rod arrived at a laboratory for testing. Analysis (visual inspection, 100x nital-etched micrograph, fluorescent magnetic-particle testing, and metallographic examination) supported the conclusion that the rod failed in fatigue with the origin along the lap and located approximately 4.7 mm below the forged surface. The presence of oxides may have been a partial cause for the defect. Recommendations included better inspection of the forgings by fluorescent magnetic-particle testing before machining.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001588
EISBN: 978-1-62708-221-1
... ductility direction of the transition joint plate, lamellar tearing of plate material occurred at the boxed I-beam fillet weld attachment. Brittle fracture of this joint precipitated global collapse of the truss structure. Bridges (structures) Ore conveyors Structural steel Brittle fracture...
Abstract
On 23 Dec 1997, a portion of the main ore conveyor at a large mine collapsed onto a highway and shut down mine operations. The conveyor structure that collapsed was supported by a steel truss spanning 185 ft. Truss failure occurred just as the conveyor transport rate was increased to 8,260 tph. Under this total loading, which was only slightly above the regular operating condition, a poorly designed and fabricated transition joint in the west lower chord failed, thereby overloading other key structural members and causing the entire truss to collapse. Another contributing cause of the collapse was the transition joint welds, where the fracture originated. They were made with undersized fillet welds, 20% smaller than specified on the original fabrication drawing. Because of the poorly designed joint detail and the deficient welds, both of which concentrated stress and strain in the low ductility direction of the transition joint plate, lamellar tearing of plate material occurred at the boxed I-beam fillet weld attachment. Brittle fracture of this joint precipitated global collapse of the truss structure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001549
EISBN: 978-1-62708-224-2
... cracks probably would have been detected well before final failure. Bolts Cranes Drive shafts I-beams Steel plate Structural steel Fatigue fracture Introduction Cranes, and hoisting equipment in general, are almost always subjected to severe cyclic loading in service. The possibility...
Abstract
Crane collapse due to bolt fatigue and fatigue failure of a crane support column, crane tower, overhead yard crane, hoist rope, and overhead crane drive shaft are described. The first four examples relate to the structural integrity of cranes. However, equipment such as drive and hoist-train components are often subject to severe fatigue loading and are perhaps even more prone to fatigue failure. In all instances, the presence of fatigue cracks at least contributed to the failure. In most instances, fatigue was the sole cause. Further, in each case, with regular inspection, fatigue cracks probably would have been detected well before final failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001611
EISBN: 978-1-62708-219-8
... of the I-beam comprising the lower chord of the truss section scheduled to be the next truss erected. The crack ran almost the entire length of the lower flange, approximately 24 in. The failed weld joined the 3.25 in. thick flange of one I-beam to a 2.40 in. thick flange on another I-beam of 2.40...
Abstract
Cold cracking of structural steel weldments is a well-documented failure mechanism, and extensive work has been done to recognize welding and materials selection parameters associated with it. These efforts, however, have not fully eliminated the occurrence of such failures. This article examines a case of cold cracking failure in the construction industry. Fortunately, the failure was identified prior to final erection of the structural members and the weld was successfully reworked. The article explains how various welding parameters, such as electrode/wire selection, joint design, and pre/postheating, played a role in the failure. Human factors and fabrication practices that contributed to the problem are covered as well.
Image
in Fatigue Fracture That Initiated at a Forging Lap in a Connecting Rod for a Truck Engine
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 15B41 steel forged truck connecting rod that failed in service from fatigue initiated at a forging lap. (a) Connecting rod and a detail of the I-beam portion showing the forging lop in one wall.
More
Image
in Failure Analysis of a Radio-Activated Accelerator Component
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 3 Schematic of the LANSCE beam stop area showing the location of components including the beam exit window
More
Image
Published: 01 June 2019
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047512
EISBN: 978-1-62708-219-8
... opposite to those shown in Fig. 1(b) . The inside of the north side of the column is shown in Fig. 1(c) . The unwelded portion is clearly visible at the 13-mm ( 1 2 -in.) gap between the upper and lower sections of the column wall. The I-beam at near right is a vertical internal stiffener...
Abstract
During construction of a revolving sky-tower observatory, a 2.4 m (8 ft) diam cylindrical column developed serious circumferential cracks overnight at the 14 m (46 ft) level where two 12 m (40 ft) sections were joined by a girth weld. The temperatures ranged from 12 deg C (53 deg F) to 7 deg C (45 deg F) that night. The column was shop fabricated in 12 m (40 ft) long sections of 19 mm (3/4 in.) thick steel plate of ASTM A36 steel. Crack initiation was caused by high residual stress during girth welding, and the presence of notches formed by the termination of the incomplete welds. Continuation of the cracks was attributed to the brittle condition of the steel when cooled by the night air. A steel with a much lower ductile-to-brittle transition temperature is essential for this type of structure. Other necessary steps include better control of the girth-welding, choice of a more favorable electrode to avoid porosity, careful termination of all welds to avoid formation of notches, and completion of all welds before other sections of the column are erected.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0092122
EISBN: 978-1-62708-222-8
... examination disclosed that the side-rail extrusions, which had the I-beam shape shown in Fig. 1(a) , had failed by plastic buckling, with only slight surface cracking in the most severely deformed areas. There were no visible defects in materials or workmanship, and all dimensions of the side rails were...
Abstract
Several 6063-T6 aluminum alloy extension ladders of the same size and type collapsed in service in the same manner; the extruded aluminum alloy 6063-T6 side rails buckled, but the rungs and hardware remained firmly in place. The ladders had a maximum extended length of 6.4 m (21 ft) with a recommended maximum angle of inclination of 75 deg (15 deg from vertical). Investigation (visual inspection, hardness testing, metallographic examination, stress analysis, and tensile tests) supported the conclusion that the side rails of the ladders buckled when subjected to loads that produced stresses beyond the yield strength of the alloy. Recommendations included increasing the thickness of the flange and web of the side-rail extrusion.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001821
EISBN: 978-1-62708-180-1
... determined for the gage locations ( Ref 7 ): S rMiner = [ ∑ α i S ri 3 ] 1 / 3 = 13.6 MPa ( 1.98 ksi ) where α i is the frequency of occurrence of stress-range level s ri . The measurements indicated that the effective stress range in other...
Abstract
This article illustrates the defects, which result because of poor-quality welds in the bridge components. The cracks resulting from the use of low fatigue strength details are also discussed. The article describes the effect of out-of-plane distortion in floor-beam-girder connection plates, multiple-girder diaphragm connection plate, and tied-arch floor beams.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001151
EISBN: 978-1-62708-219-8
.... The building with partially collapsed roof is seen in an aerial photograph in Fig. 1 and from the inside of the building in Fig. 2 . Several horizontal girders are seen to have broken free from vertical I-beams during the roof failure. Numerous horizontal trusses broke during the roof collapse, as seen...
Abstract
A portion of the roof of a single story building collapsed during a thunder storm. A failure analysis was conducted to determine whether this structural failure was due to improper design, substandard construction materials, faulty erection, or extreme weather conditions. The failure analysis consisted of an onsite inspection, macrofractographic examination of the fractures where the girders were welded to the columns, macrofractographic examination of the fractured trusses, metallographic examination of the girder and truss materials, chemical analysis of the low-carbon steel girder and truss materials, and mechanical testing of the truss material. It was concluded that substandard structural components in combination with faulty construction was responsible for this service failure.
1