1-20 of 120 Search Results for

Hydrogen sulfide

Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051870
EISBN: 978-1-62708-228-0
... stress and corrosion in the presence of water and hydrogen sulfide was concluded to have initiated the failure which was propagated by fatigue. It was recommended that in the presence of known corrosive environments the tubing should not be used above 50% of its theoretical fatigue life. Coiled...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001179
EISBN: 978-1-62708-228-0
... at 530 deg C. The connectors were made of SAE 4140 Cr-Mo steel. The material for the rod pipes was Fe-0.4C-1Mn steel. Structural stresses played a role in the cracking. Iron sulfide formed on the fracture planes and flake-like stress cracks occurred in the steel. The hydrogen sulfide content of the gas...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048702
EISBN: 978-1-62708-220-4
... the major constituents. Fig. 1 Failed aluminum brass condenser tube from a saltwater heat exchanger. The tube failed from pitting caused by hydrogen sulfide and chlorides in the feedwater. (a) Cross section of tube showing deep pits and excessive metal wastage. 2 3 4 ×. (b) Higher...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
... of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048698
EISBN: 978-1-62708-228-0
.... The tee joint in the piping between the heat exchanger and the sieve bed failed after 12 months. A hole in the tee fitting and a corrosion product on the inner surface of the pitting was revealed by visual examination. Iron sulfide was revealed by chemical analysis of the scale which indicated hydrogen...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001166
EISBN: 978-1-62708-228-0
... product from each pipe section were analyzed for carbon, sulfur, and iron and were found to consist mainly of iron sulfide mixed with soot and rust. The damage resulted from a high content of hydrogen sulfide in the gas (6% CO2, 20% CO, 8 to 12% H2, 0.5 to 1.5% CH4, remainder N2). To process the coal...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0091358
EISBN: 978-1-62708-233-4
... used in the valve. Manganese sulfide stringers in the valve were exposed at end-grain surfaces in contact with the beverage. The stringers, which were anodic to the surrounding metal, were subject to corrosion, producing a hydrogen sulfide concentration in the immediately adjacent liquid...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001169
EISBN: 978-1-62708-220-4
... corrosion agents, especially chlorides. If chlorides were absent, hydrogen sulfide which causes similar pitting and is capable of causing cracks could be suspected. Favorable state of stresses, which could be residual or due to heat treating, bending or straightening operations, would be recommended...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001165
EISBN: 978-1-62708-234-1
... in the scrubbing water was actually sulfide (including hydrogen sulfide) and was the main cause of corrosion. Graphitic corrosion Pump impellers Sulfides Gray iron Dealloying/selective leaching A Cast iron pump impeller showed strong corrosion after an operating period of only one-half year. As can...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0048819
EISBN: 978-1-62708-233-4
... Abstract A large pressure vessel that had been in service as a hydrogen sulfide (H2S) absorber developed cracks and began leaking at a nozzle. The vessel contained a 20% aqueous solution of potassium hydroxide (KOH), potassium carbonate (K2CO3), and arsenic. The vessel wall was manufactured...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001325
EISBN: 978-1-62708-215-0
... Abstract A carbon steel piping cross-tee assembly which conveyed hydrogen sulfide (H7S) process gas at 150 to 275 deg C (300 to 585 deg F) with a maximum allowable operating pressure of 3 MPa (450 psig) ruptured at the toe of one of the welds at the cross after several years of service...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001235
EISBN: 978-1-62708-228-0
... may drop. This measure was ultimately recommended, deemed more effective and cheaper. Blistering Cracking (fracturing) Hydrogen sulfide Natural gas Pipelines Fe-0.22C Hydrogen damage and embrittlement A welded natural gas line of 400 mm O.D. and 9 mm wall thickness made of unalloyed...
Image
Published: 01 January 2002
Fig. 8 Stepwise cracking of a low-strength pipeline steel exposed to hydrogen sulfide (H 2 S). 6× More
Image
Published: 15 January 2021
Fig. 8 Stepwise cracking of a low-strength pipeline steel exposed to hydrogen sulfide (H 2 S). Original magnification: 6× More
Image
Published: 30 August 2021
Fig. 3 Low-carbon steel tee fitting in a line leading to a natural-gas dryer that failed from hydrogen sulfide corrosion. (a) Arrangement of piping showing point of leakage in the tee fitting. (b) Inner surface of the tee fitting showing corrosion deposit and area of complete penetration More
Image
Published: 01 January 2002
Fig. 3 Low-carbon steel tee fitting in a line leading to a natural-gas dryer that failed from hydrogen sulfide corrosion. (a) Arrangement of piping showing point of leakage in the tee fitting. (b) Inner surface of the tee fitting showing corrosion deposit and area of complete penetration More
Image
Published: 01 June 2019
Fig. 1 Low-carbon steel tee fitting in a line leading to a natural-gas dryer that failed from hydrogen sulfide corrosion. (a) Arrangement of piping showing point of leakage in the tee fitting. (b) Inner surface of the tee fitting showing corrosion deposit and area of complete penetration More
Image
Published: 01 January 2002
Fig. 4 Failed aluminum brass condenser tube from a saltwater heat exchanger. The tube failed from pitting caused by hydrogen sulfide and chlorides in the feedwater. (a) Cross section of tube showing deep pits and excessive metal wastage. 2 3 4 ×. (b) Higher magnification view of a pit More
Image
Published: 01 June 2019
Fig. 1 Failed aluminum brass condenser tube from a saltwater heat exchanger. The tube failed from pitting caused by hydrogen sulfide and chlorides in the feedwater. (a) Cross section of tube showing deep pits and excessive metal wastage. 2 3 4 ×. (b) Higher magnification view of a pit More
Image
Published: 30 August 2021
Fig. 4 Failed aluminum brass condenser tube from a saltwater heat exchanger. The tube failed from pitting caused by hydrogen sulfide and chlorides in the feedwater. (a) Cross section of tube showing deep pits and excessive metal wastage. Original magnification: 2.75×. (b) Higher-magnification More