Skip Nav Destination
Close Modal
By
Lawrence J. Kashar
By
Amitava Ray, M.S. Prasad, S.K. Dhua, S.K. Sen, S. Jha
By
Harold Roper
Search Results for
Hot-rolled steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 160
Search Results for Hot-rolled steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001131
EISBN: 978-1-62708-214-3
... Abstract Two 25 x 40 mm (1 x 1.5 in.) AISI 4150 hot-rolled steel bars that cracked during heat treatment were examined to determine whether the heat treating procedure had contributed to the failure. Metallographic examination of a cross section taken through the fracture revealed an oxide...
Abstract
Two 25 x 40 mm (1 x 1.5 in.) AISI 4150 hot-rolled steel bars that cracked during heat treatment were examined to determine whether the heat treating procedure had contributed to the failure. Metallographic examination of a cross section taken through the fracture revealed an oxide coating on both sides of the fracture surface. The oxide was also found on the top and bottom sides of the sample. Sawcut sides of the bar did not exhibit the oxide layer The presence of the oxide in the fracture, combined with its absence on all exterior surfaces, indicated that the fracture occurred as a result of an oxide seam in the original material rather than from oxide from heat treating. Nondestructive testing prior to machining and heat treatment was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001608
EISBN: 978-1-62708-236-5
... Abstract Investigation of alleged corrosion damage to hot-rolled steel during transit requires metallurgical, chemical, and corrosion knowledge. Familiarity with non-destructive techniques and sampling procedures is necessary. A complete record of shipment history is also required, including...
Abstract
Investigation of alleged corrosion damage to hot-rolled steel during transit requires metallurgical, chemical, and corrosion knowledge. Familiarity with non-destructive techniques and sampling procedures is necessary. A complete record of shipment history is also required, including the purchasing specifications and observations and photographs taken during surveys enroute. A frequent conclusion of such investigations is that the alleged corrosion is of no significance or did not occur during the voyage.
Image
Poor Strapping: (a) Coils of hot rolled steel from Russia, said to have suf...
Available to Purchase
in Analysis of Hot Rolled Steel Transit Damage
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 18 Poor Strapping: (a) Coils of hot rolled steel from Russia, said to have suffered damage during handling during the voyage. Examination revealed that the damage had occurred during transport, but the coils had been rendered vulnerable to damage because of poor strapping at manufacture
More
Book Chapter
Surface Indications in Hot-Rolled 4130 Steel Bars
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047161
EISBN: 978-1-62708-235-8
... Abstract Routine magnetic-particle inspection revealed crack indications in a number of shafts produced from hot-rolled 4130 steel bar. A pronounced indication of this size is cause for rejection if the defect is not eliminated during subsequent machining. A microstructural analysis...
Abstract
Routine magnetic-particle inspection revealed crack indications in a number of shafts produced from hot-rolled 4130 steel bar. A pronounced indication of this size is cause for rejection if the defect is not eliminated during subsequent machining. A microstructural analysis of the shaft cross section revealed that the crack was approximately 0.5 mm (0.020 in.) deep and oriented in a radial direction. Furthermore, no stringer-type nonmetallic inclusions were observed in the vicinity of the flaw, which did not display the intergranular characteristics of a quench crack. The defect did, however, contain substantial amounts of oxide, which evidently resulted from the hot-working operation. This evidence supports the conclusion that the appearance of this discontinuity, with the long axis parallel to the working direction and radial orientation with regard to depth, strongly suggests a seam produced during rolling. Use of components with surface-defect indications as small as 0.5 mm (0.02 in.) can be risky in certain circumstances. Depending on the orientation of the flaw with respect to applied loads, the nature of the applied forces (for example, cyclic), and the operating environment, such a surface flaw can become the initiating site for a fatigue crack or a corrosion-related failure.
Image
Longitudinal section through a hot-rolled 1041 steel bar showing a carbon-r...
Available to PurchasePublished: 01 January 2002
Fig. 3 Longitudinal section through a hot-rolled 1041 steel bar showing a carbon-rich centerline (dark horizontal bands) that resulted from segregation in the ingot. Picral. 3×. Courtesy of J.R. Kilpatrick
More
Image
Hot-rolled 1022 steel showing severe banding. Bands of pearlite (dark) and ...
Available to PurchasePublished: 01 January 2002
Fig. 4 Hot-rolled 1022 steel showing severe banding. Bands of pearlite (dark) and ferrite were caused by segregation of carbon and other elements during solidification and later decomposition of austenite. Nital. 250×. Courtesy of J.R. Kilpatrick
More
Image
Type 430 stainless steel hot rolled to various percentages of reduction sho...
Available to PurchasePublished: 01 January 2002
Fig. 5 Type 430 stainless steel hot rolled to various percentages of reduction showing development of a banded structure consisting of alternate layers of ferrite (light) and martensite (dark) as the amount of hot work is increased. (a) 63% reduction. (b) 81% reduction. (c) 94% reduction. 55
More
Image
Microstructure of the steel in its hot-rolled raw state ( a ), tested at 80...
Available to Purchase
in Superplastic HSLA Steels: Microstructure and Failure
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 9 Microstructure of the steel in its hot-rolled raw state ( a ), tested at 800 °C and 0.1 mm/min crosshead speed ( b ), and tested at 750 °C and 0.1 mm/min crosshead speed ( c )
More
Image
Longitudinal section through a hot rolled 1041 steel bar showing a carbon-r...
Available to Purchase
in Failures Related to Hot Forming Processes
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 2 Longitudinal section through a hot rolled 1041 steel bar showing a carbon-rich centerline (dark horizontal bands) that resulted from segregation in the ingot. Picral etch. Original magnification: 3×. Courtesy of J.R. Kilpatrick
More
Image
Hot rolled 1022 steel showing severe banding. Bands of pearlite (dark) and ...
Available to Purchase
in Failures Related to Hot Forming Processes
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 3 Hot rolled 1022 steel showing severe banding. Bands of pearlite (dark) and ferrite were caused by segregation of carbon and other elements during solidification and later decomposition of austenite. Nital etch. Original magnification: 250×. Courtesy of J.R. Kilpatrick
More
Image
Type 430 stainless steel hot rolled to various percentages of reduction sho...
Available to Purchase
in Failures Related to Hot Forming Processes
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 4 Type 430 stainless steel hot rolled to various percentages of reduction showing development of a banded structure consisting of alternate layers of ferrite (light) and martensite (dark) as the amount of hot work is increased. (a) 63% reduction. (b) 81% reduction. (c) 94% reduction
More
Image
Prior Defects: The explosion in world trade has increased the choices of so...
Available to Purchase
in Analysis of Hot Rolled Steel Transit Damage
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
, caused by rubbing during coiling. Such damage is not possible during transport; (b and c) serrated edges on hot rolled steel coil. This condition is a natural result of hot rolling, but it should be trimmed away at the steel mill prior to shipping.
More
Image
(a) A magnetite coating on hot rolled sheet, with fresh rust breaking throu...
Available to Purchase
in Analysis of Hot Rolled Steel Transit Damage
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 2 (a) A magnetite coating on hot rolled sheet, with fresh rust breaking through; (b) Hot rolled surface, about 60% covered with fresh rust; (c) Hot rolled steel, with all the original magnetite lost. Rust is beginning to darken where arrowed, to form hematite.
More
Image
Center portion of pot cross-section in area D showing that the banded struc...
Available to Purchase
in Failure of a Steel Pot Used for Melting Magnesium Alloys
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 11 Center portion of pot cross-section in area D showing that the banded structure of the hot rolled steel has been partially eliminated by subsequent heating; nital etch; 63×.
More
Book Chapter
Identification of Iron Oxide Inclusions
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0045909
EISBN: 978-1-62708-232-7
... Abstract A hot rolled, low-carbon steel pot used to melt magnesium alloys leaked, releasing about 35 kg (80 lb) of molten magnesium onto the foundry floor and causing an extensive fire. Due to the fire, the original leakage hole could not be investigated. Samples of the failed pot were polished...
Abstract
A hot rolled, low-carbon steel pot used to melt magnesium alloys leaked, releasing about 35 kg (80 lb) of molten magnesium onto the foundry floor and causing an extensive fire. Due to the fire, the original leakage hole could not be investigated. Samples of the failed pot were polished and etched and were found to be composed of ferrite and pearlite mixtures, as would be expected. However, the sample taken from a location about 75 mm (3 in.) from the hole contained a cluster of unusually large inclusions. By removing the beryllium window from in front of the detector, EPMA spectra were obtained from the inclusions and from the steel matrix. The inclusion spectrum contained primarily iron and oxygen, whereas the matrix spectrum contained primarily iron. X-ray maps were made to show the distribution of iron and oxygen. These results indicated that the inclusions were iron oxide. A similar inclusion at the failure site in the melting pot may have reacted violently with the molten magnesium, causing the leak.
Image
A preexisting hot mill rolling crack along the outside surface of the steel...
Available to PurchasePublished: 30 August 2021
Fig. 4 A preexisting hot mill rolling crack along the outside surface of the steel. Note the white indications of decarburization along the crack
More
Book Chapter
Failure of a Steel Pot Used for Melting Magnesium Alloys
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001490
EISBN: 978-1-62708-232-7
... vertical weld forming the cylinder. The material used is hot-rolled plain carbon steel, such as A.I.S.I. 1020 or 1022. As measured on a sample pot, the thickness averaged 0.366 inch. According to the foundry, the pots have a useful life of 70 to 100 heats; the failed pot had allegedly been used...
Abstract
A steel pot used as crucible in a magnesium alloy foundry developed a leak that resulted in a fire and caused extensive damage. Hypotheses as to the cause of the leak included a defect in the pot, overuse, overheating, and poor foundry practices. Scanning electron microscopy, transmission electron microscopy, optical microscopy, and x-ray microanalysis in conjunction with dimensional analysis, phase diagrams and thermodynamics considerations were employed to evaluate the various hypotheses. All evidence pointed to an oxide mass in the area where the hole developed, likely introduced during the steelmaking process.
Book Chapter
Microstructural Features of Prematurely Failed Hot-Strip Mill Work Rolls: Some Studies in Spalling Propensity
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001532
EISBN: 978-1-62708-232-7
... Abstract Work rolls made of indefinite chill double-poured (ICDP) iron are commonly used in the finishing trains of hot-strip mills (HSMs). In actual service, spalling, apart from other surface degeneration modes, constitutes a major mechanism of premature roll failures. Although spalling can...
Abstract
Work rolls made of indefinite chill double-poured (ICDP) iron are commonly used in the finishing trains of hot-strip mills (HSMs). In actual service, spalling, apart from other surface degeneration modes, constitutes a major mechanism of premature roll failures. Although spalling can be a culmination of roll material quality and/or mill abuse, the microstructure of a broken roll can often unveil intrinsic inadequacies in roll material quality that possibly accentuate failure. This is particularly relevant in circumstances when rolls, despite operation under similar mill environment, exhibit variations in roll life. The paper provides an insight into the microstructural characteristics of spalled ICED HSM work rolls, which underwent failure under similar mill operating environment in an integrated steel plant under the Steel Authority of India Limited. Microstructural features influencing ICDP roll quality, viz. characteristics of graphite, carbides, martensite, etc., have been extensively studied through optical microscopy, quantitative image analysis (QIA), and electron-probe microanalysis (EPMA). These are discussed in the context of spalling propensity and roll life.
Book Chapter
Fatigue and Corrosion Fatigue Failure Surfaces of Concrete Reinforcement
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001656
EISBN: 978-1-62708-219-8
... to sinusoidal load fluctuations at 6.7 Hz in air, 3% NaCl solution, and natural sea water are described. Reinforcement types studied included: hot-rolled mild steel bar, hot-rolled alloyed high strength bar, cold-worked high strength bar, galvanized bar of all these three types, nickel-clad bar and epoxy-coated...
Abstract
Some corrosion processes in the presence of chlorides, for steel embedded in concrete, are described and illustrated with the aid of scanning electron microscope EDXA data. Observations made of failure surfaces of reinforcements removed from the concrete beams after being subjected to sinusoidal load fluctuations at 6.7 Hz in air, 3% NaCl solution, and natural sea water are described. Reinforcement types studied included: hot-rolled mild steel bar, hot-rolled alloyed high strength bar, cold-worked high strength bar, galvanized bar of all these three types, nickel-clad bar and epoxy-coated bar.
Book Chapter
Brittle Fracture of a Support Arm for a Front-End Loader
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0045987
EISBN: 978-1-62708-221-1
... Abstract A support arm on a front-end loader failed in a brittle manner while lifting a load. The arm had a cross section of 50 x 200 mm (2 x 8 in.). Material used for the arm was hot-rolled ASTM A572, grade 42 (type 1), steel, which exhibited poor impact properties in the as-rolled condition...
Abstract
A support arm on a front-end loader failed in a brittle manner while lifting a load. The arm had a cross section of 50 x 200 mm (2 x 8 in.). Material used for the arm was hot-rolled ASTM A572, grade 42 (type 1), steel, which exhibited poor impact properties in the as-rolled condition and had a ductile-to-brittle transition temperature exceeding 93 deg C (200 deg F). This transition temperature was much too high for the application. It was recommended that a modified ASTM A572, grade 42 (0.15% C max), type 1 or 2, steel be used (type 1, which contains niobium, may be needed to meet strength requirements). The steel should be specified to be killed, fine-grained, and normalized, with Charpy V-notch impact-energy values of 20 J (15 ft·lbf) at -46 deg C (-50 deg F) in the longitudinal direction and 20 J (15 ft·lbf) at -29 deg C (-20 deg F) in the transverse direction.
1