1-20 of 330 Search Results for

High-carbon steel (alloy steel)

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048808
EISBN: 978-1-62708-228-0
... filler metal. Fine cracks starting inside the weld zone and spreading outward through the weld and toward the surface were observed during examination. Decarburization and graphitization of the carbon steel at the interface was noted. The high carbon level was found to allow martensite to form eventually...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0092131
EISBN: 978-1-62708-234-1
... steel spring and an outer spring (both of patented and drawn high-carbon steel wire) taken from another cylinder in the same engine were examined in the laboratory to determine why one had distorted and the other had not. Investigation (visual inspection, microstructure examination, and hardness testing...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047387
EISBN: 978-1-62708-225-9
...Abstract Abstract Induction-hardened teeth on a sprocket cast of low-alloy steel wore at an unacceptably high rate. A surface hardness of 50 to 51 HRC was determined; 55 HRC minimum had been specified. Analysis revealed that the alloy content of the steel was adequate for the desired...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001778
EISBN: 978-1-62708-241-9
... by initiation of fatigue cracks in the decarburized zone under conditions of repeated bending and unbending stresses superimposed on the static tensile load. wire rope brittle fracture decarburization steel grain-boundary cracks electron probe microanalysis tensile strength High-carbon steel (alloy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0091009
EISBN: 978-1-62708-235-8
... welding, immediately prior to heat treatment. Multiple-pass arc welds secured the carbon-steel flanges to the Ni-Cr-Mo-V alloy steel tubes. Investigation (visual inspection, metallographic analysis, and evaluation of the fabrication history and the analysis data) supported the conclusion that the tube...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001125
EISBN: 978-1-62708-214-3
...Abstract Abstract An 1100 aluminum alloy connector of a high-tension aluminum conductor steel-reinforced (ACSR) transmission cable failed after more than 20 years in service, in a region of consider able industrial pollution. The steel core was spliced with a galvanized 1020 carbon steel sheath...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047392
EISBN: 978-1-62708-221-1
... (a weldment of low-alloy steel castings). The roadarm fractured in the HAZ because of high carbon-equivalent content. Fracture surface is at arrow. 0.8× Some roadarms of similar carbon content and welded by the same procedure had not failed; it was determined that this was because they had been...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089766
EISBN: 978-1-62708-224-2
... flange of low-carbon low-alloy steel that was welded to an AISI 1025 steel tube, and the improved design included placing the welded joint of the flange farther away from the flange fillet. Investigation (visual inspection and chemical analysis) supported the conclusion that the failures in the flanges...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
...Abstract Abstract This case study describes the failure analysis of a steel nozzle in which cracking was observed after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0089254
EISBN: 978-1-62708-225-9
... grade of carbon steel (SAE type 1144, UNS G11440), as required by the manufacturer. This type of steel is marketed as having a rather unusual combination of high strength and high machinability. The source of the high strength is in the carbon content and the cold-drawing process used to produce...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047479
EISBN: 978-1-62708-221-1
...Abstract Abstract A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047428
EISBN: 978-1-62708-235-8
...Abstract Abstract A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001270
EISBN: 978-1-62708-215-0
...Abstract Abstract An investigation was conducted to determine the factors responsible for the occasional formation of cracks on the parting lines of medium plain carbon and low-alloy medium-carbon steel forgings. The cracks were present on as-forged parts and grew during heat treatment...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001331
EISBN: 978-1-62708-215-0
... the pipe was made of AISI 1020 carbon steel and not P22 low-alloy steel, this must be considered a contributing cause of failure, inasmuch as P22 would not be expected to deteriorate as rapidly as 1020 under high-pressure steam conditions. Position of the pipe within the system caused the localized damage...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001792
EISBN: 978-1-62708-241-9
... to the propeller, is made of low alloy steel. The other shaft, part of a clutch mechanism that regulates the transmission of power from the engine to the gears, is made of carbon steel. Fracture surface examination of the gear shaft revealed circumferential ratchet marks with the presence of inward progressive...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001813
EISBN: 978-1-62708-241-9
...Abstract Abstract Graphitization, the formation of graphite nodules in carbon and low alloy steels, contributes to many failures in high-temperature environments. Three such failures in power-generating systems were analyzed to demonstrate the unpredictable nature of this failure mechanism...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... or holes, or burrs may be present that promote cracking in parts. Sometimes the material specified cannot achieve the properties required for the service intended. For instance, a pneumatic chisel made from a high-carbon, high-chromium steel will not achieve as long a service life as a silicon-type shock...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
... be encountered and must be kept in consideration for their hardenability effects. Trace levels of unspecified elements can also be high enough to impart undesired hardening response. For instance, many carbon steel specifications contain no maximum requirements for chromium, nickel, aluminum, and molybdenum...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... = 2 h. (b) Assume t = ∞. The following are recommendations with respect to the tempering process ( Ref 4 ): Generally, the higher the tempering temperature, the greater the resulting ductility and toughness. However, this is at the expense of strength and hardness. High-carbon steels...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
..., enters the metal, diffuses to the crack tip region, and causes propagation by hydrogen stress cracking. This mechanism is no doubt involved in the environmental embrittlement of high-hardness, high-strength carbon, alloy, and stainless steels. While each of these mechanisms explains some...