1-20 of 456 Search Results for

Heating equipment

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006804
EISBN: 978-1-62708-329-4
... Abstract This article addresses the effects of damage to equipment and structures due to explosions (blast), fire, and heat as well as the methodologies that are used by investigating teams to assess the damage and remaining life of the equipment. It discusses the steps involved in preliminary...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046079
EISBN: 978-1-62708-233-4
... intergranular phase, resulting in failure by brittle fracture at low impact loads during handling and storage. Recommendation included manufacture of the pipe with aluminized instead of galvanized steel sheet for the combustion chamber. Galvanized steels Heating equipment Intermetallic Zinc compounds...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001439
EISBN: 978-1-62708-235-8
... indicated severe service conditions, a proprietary alloy similar to AG1, but containing 3% nickel, was recommended. Brazed joints Brazing alloys Heating equipment Intermetallic phases Cu-14Ag-5P 90Cu-10Ni Joining-related failures Dealloying/selective leaching Persistent leakage...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001374
EISBN: 978-1-62708-215-0
... included use of a higher-copper brass, cupronickel, or Monel for the valve seats and stems and operation of the valves in either the fully opened or closed position. Air-conditioning equipment Heating equipment UNS C35300 C36000 UNS C36000 Erosion - corrosion Erosive wear Background Two...
Image
Published: 30 August 2021
Fig. 9 Details of an equipment and structural damage map. (a) Map showing damage to equipment and structures from a combination of blast, fire, and heat damage. (b) The categories have more to do with the API 579 fitness-for-service assessment than quantified overpressure or temperature More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001551
EISBN: 978-1-62708-233-4
... a chemical or heat environment. If a metallurgist is unable to perform the vibration analysis, it's important to be aware that such an investigation can be done. The investigating team should then be supplemented with a competent mechanical engineer and proper equipment, or an independent laboratory...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048691
EISBN: 978-1-62708-220-4
... Abstract AISI type 410 stainless steel tube bundles in a heat exchanger experienced leakage during hydrostatic testing even before being in service. The inside surfaces of the tubes was observed to have been pitted. Chloride-ion pitting was revealed by the undercutting in the cross section...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001011
EISBN: 978-1-62708-229-7
... failure took place was 50.8 mm in diam with a nominal wall thickness of 8 mm. It connected to the AISI 321 superheater tube by means of a butt weld and was one of 46 such parallel connecting tubes. The Cr-Mo tubing was situated outside the heat transfer zone of the superheater. The overall sequence...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047579
EISBN: 978-1-62708-234-1
... Abstract Several fractures occurred in flange studs used for remote handling of radioactive equipment. The studs, of quenched-and-tempered type 414 stainless steel, fractured in the HAZs produced in the studs during the circumferential welding that joined the studs to the flanges. The weld...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001667
EISBN: 978-1-62708-235-8
... Abstract Nondestructive metallographic examination of materials frequently must be performed on-site when the component in question cannot be moved or destructively examined. Often, it is imperative that specific microstructural information (i.e., material type, heat treatment condition...
Image
Published: 30 August 2021
Fig. 15 Life assessment of rotating equipment that has been damaged by exposure to excessive temperatures or loss of lubricant. (a) Journal that overheated because of the loss of lubricating oil. (b) Hardness test results for the heat-damaged region indicated the formation of a hard martensite More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006809
EISBN: 978-1-62708-329-4
... Abstract A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001262
EISBN: 978-1-62708-224-2
... Abstract A chain link which was part of the hoisting mechanism of a drop hammer broke after three or four months of service. It was reportedly manufactured of the heat resistant steel 30 Cr-Mo-V 9 (Material No. 1.7707). The fracture of the chain link had a conchoidal structure and ran along...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001339
EISBN: 978-1-62708-215-0
... heated with a gas torch and radiographed again. If mercury was present in the suspect area, the mercury would have been redistributed by the heat. Many false leads, but no mercury regions were detected when radiography was used to assess the other welds in the equipment. Radiographic examination...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001662
EISBN: 978-1-62708-236-5
... Abstract A steam heated exchanger was designed for concentrating sulfuric acid. Tantalum was selected for the tubing and the tube sheet liner because of its outstanding corrosion resistance. However, although the exchanger passed a searching shop inspection, it leaked during site testing...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... in the design of any pressure vessel is to select the proper design code based on its intended use. For example, a pressure vessel may be a power or heating boiler, a nuclear reactor chamber, a chemical process chamber, a hydrostatic test chamber used to test underwater equipment, or an aircraft fuselage...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089774
EISBN: 978-1-62708-235-8
... Abstract An amusement ride failed when a component in the ride parted, permitting it to fly apart. The ride consisted of a central shaft supporting a spider of three arms, each of which was equipped with an AISI 1040 steel secondary shaft about which a circular platform rotated. The main shaft...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
... machining, defective welds, residual welding stresses, misalignment, and improper and insufficient lubrication are all common and critical causes of lifting-equipment failures. Metallurgically, the most common cause of failures is improper heat treatment. Quench cracks and residual heat treatment or weld...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
... lubrication are all common and critical causes of lifting-equipment failures. Metallurgically, the most common cause of failures is improper heat treatment. Quench cracks and residual heat-treat stresses contribute to such failures. The examples in this article illustrate many of these causes. Investigation...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001480
EISBN: 978-1-62708-229-7
... locally, and the structural condition suggested that the tube in general had been heated at a lower temperature of the order of 600 deg C (1112 deg F) for some appreciable time. In this instance, overheating of the tube in the absence of the copper deposits may not have led to failure. Boiler tubes...