Skip Nav Destination
Close Modal
By
Fulmer Research Institute Ltd.
By
Zheng-Fei Hu, Da-Hai He, Xi-Mao Wu
By
Arun Sreeranganathan, Douglas L. Marriott
By
S.K. Srivastava, M.V. Katarki
By
J. Robert Kattus
By
Thomas J. Moore, David R. Hull, Donald L. Alger
Search Results for
Heaters (tube)
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 67
Search Results for Heaters (tube)
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Embrittlement of a Titanium Heater Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048757
EISBN: 978-1-62708-234-1
... Abstract Brief overheating of the 89 mm OD 6.4 mm wall thickness titanium heater tubes (ASTM B337, grade 2) was caused by a flow stoppage in a leach heater. Blue-tinted areas and patches of flaky white, yellow, and brown oxide scale was revealed on visual examination. It was disclosed...
Abstract
Brief overheating of the 89 mm OD 6.4 mm wall thickness titanium heater tubes (ASTM B337, grade 2) was caused by a flow stoppage in a leach heater. Blue-tinted areas and patches of flaky white, yellow, and brown oxide scale was revealed on visual examination. It was disclosed by subjecting the overheated tube to a flattening test that the tube no longer met ASTM B 337 specifications. Large grain size and numerous needlelike hydride particles were disclosed in the microstructure of the overheated tube. Heating to approximately 815 deg C was revealed by the presence of the flaky oxide and increased grain size. Hydrogen and oxygen absorption was revealed by the presence of hydrides and the shallow surface embrittlement and thus susceptibility to cracking at ambient temperatures was observed. It was concluded that the titanium tubes were embrittled due to overheating the tubes and the severe surface embrittlement resulted from oxygen absorption which made the surface layers susceptible to cracking under start up and shutdown. Replacement tubes made of a heat-resistant alloy (e.g., Hastelloy C-276) were recommended.
Book Chapter
Ruptured Stainless Steel Heater Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001247
EISBN: 978-1-62708-228-0
... Abstract Three samples from a ruptured 316 stainless steel tube were examined. The tube, 114 mm OD, wall thickness 8.00 mm, with 13 mm thick 321 stainless steel fins welded to the outer surface of the tube, was part of a heater through which sour gas, containing methane plus H2S and CO, passed...
Abstract
Three samples from a ruptured 316 stainless steel tube were examined. The tube, 114 mm OD, wall thickness 8.00 mm, with 13 mm thick 321 stainless steel fins welded to the outer surface of the tube, was part of a heater through which sour gas, containing methane plus H2S and CO, passed at 1150 psig. The sour gas was heated to 600 deg F by burners playing on the outside of the tube burning “sweet” gas plus air. The inner and outer surfaces of all samples showed evidence of corrosive attack. Electron probe microanalysis showed the corrosion products contained sulfur with iron, together with nickel to a lesser extent. Local thinning, cavitation, and ductile deformation markings associated with the unmatched sample taken from the center of the fire showed the tube ruptured as a result of overheating. Overheating while the temperature recorder was off the chart caused severe loss of tube strength, resulting in ductile rupture. The minimum overheating temperature could be deduced at around 1200 deg F due to the presence of a eutectic observed metallographically within the surface corrosion products.
Image
Stress rupture of heater tube. (a) Heater tube that failed due to stress ru...
Available to PurchasePublished: 01 January 2002
Fig. 10 Stress rupture of heater tube. (a) Heater tube that failed due to stress rupture. (b) and (c) Stress-rupture voids near the fracture. Source Ref 10
More
Book Chapter
Failure Analysis of T12 Boiler Re-Heater Tubes During Short-Term Service
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001834
EISBN: 978-1-62708-241-9
... and re-heater tubes) in thermal power plants. Although these high-temperature components have a design life of 20 years and some have been in service for much longer, tube ruptures occasionally occur in power plants; most of these accidents are tube blowouts in the tubing system. These accidents cause...
Abstract
The failure of T12 reheater tubes that had been in service for only 3000 h was investigated. The thickness of the tubes was visibly reduced by heavy oxidation corrosion on the inner and outer walls. The original pearlite substrate completely decomposed. Uniform oxide scale observed on the inner wall showed obvious vapor oxidation corrosion characteristics. Corrosion originated in the grain boundary, and selective oxidation occurred due to ion diffusion in the substrate. The layered oxide scale on the inner wall is related to the different diffusion rates for different cations. Exposure to high temperature corrosive flux accelerated the corrosion on the outer wall. Microstructure degradation and the corrosion characteristics observed indicate that the tubes failed primarily because of overheating, which is confirmed by calculations.
Image
Predicted remaining heater tube lives as a function of tube metal temperatu...
Available to Purchase
in Elevated-Temperature Life Assessment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 22 Predicted remaining heater tube lives as a function of tube metal temperatures from 595 to 650 °C (1100 to 1200 °F)
More
Image
Photographs of (a) outer and (b) inner surface of water heater tube with no...
Available to Purchase
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 45 Photographs of (a) outer and (b) inner surface of water heater tube with no apparent indication of damage
More
Image
Published: 01 December 1993
Image
in Ruptured Stainless Steel Heater Tube
> ASM Failure Analysis Case Histories: Oil and Gas Production Equipment
Published: 01 June 2019
Image
(a) Heater tube that failed due to stress rupture. (b) and (c) Stress-ruptu...
Available to PurchasePublished: 15 January 2021
Fig. 13 (a) Heater tube that failed due to stress rupture. (b) and (c) Stress-rupture voids near the fracture. Source: Ref 18
More
Book Chapter
Elevated-Temperature Life Assessment
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Book Chapter
Failure Analysis of Fire Tube Sleeve of Heater Treater
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001818
EISBN: 978-1-62708-241-9
...-base superalloy metal loss wall thinning grain coarsening stereomicroscopy temperature Incoloy 800 (nickel-base superalloy) UNS N08800 Introduction and Background Information The fire tube sleeve of the Heater Treater ruptured while the unit was operating under normal conditions where...
Abstract
A sleeve-shaped fire shield that operates inside one of two burner trains in an oil and gas processing unit ruptured after 15 y of service. A detailed analysis was conducted to determine how and why the sleeve failed. The investigation included visual inspection, chemical and gas analysis, mechanical property testing, stereomicroscopy, and metallographic examination. The fire sleeves are fabricated from 3-mm thick plate made of Incoloy 800 rolled into 540-mm diam sections welded along the seam. Three such sections are joined together by circumferential welds to form a single 2.8 m sleeve. The findings from the investigation indicated that internal oxidation corrosion, driven by high temperatures, was the primary cause of failure. Prolonged exposure to temperatures up to 760 °C resulted in sensitization of the material, making it vulnerable to grain boundary attack. This led to significant deterioration of the grain boundaries, causing extensive grain loss (grain dropping) and the subsequent thinning of sleeve walls. Prior to failure, some portions of the sleeve were only 1.6 mm thick, nearly half their original thickness.
Image
Replication and microstructural evaluation combined with stress-rupture tes...
Available to Purchase
in Failure Prevention through Life Assessment of Structural Components and Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 14 Replication and microstructural evaluation combined with stress-rupture testing as performed on turbine blades and heater tubes to estimate their remaining life. (a) Land-based turbine. (b) Heater tubes. (c) Typical stress-rupture curve for 9Cr-1Mo material showing that the stress
More
Image
Replication and microstructural evaluation combined with stress-rupture tes...
Available to Purchase
in Failure Analysis and Life Assessment of Structural Components and Equipment
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 14 Replication and microstructural evaluation combined with stress-rupture testing as performed on turbine blades and heater tubes to estimate the remaining life. (a) Land-based turbine. (b) Heater tubes. (c) Typical stress-rupture curve for 9Cr-1Mo material showing that the stress
More
Book Chapter
Fracture of a Brine-Heater Shell at Welds
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048733
EISBN: 978-1-62708-235-8
... Heaters (tube) Sea water Welded joints ASTM A285 grade C UNS K02801 (Other, general, or unspecified) fracture The brine-heater shell ( Fig. 1 ) in a seawater-conversion plant failed by bursting along a welded joint connecting the hot well to the heater shell. Failure occurred approximately 2...
Abstract
The brine-heater shell in a seawater-conversion plant failed by bursting along a welded joint connecting the hot well (C70600 per ASTM B 466) to the heater shell (ASTM A285, grade C steel). Three cracks in the welded joints between the heater shell and the hot well were revealed by visual inspection. It was observed that crack 1 and 2 were covered with high-temperature oxidation products which revealed that the surfaces had been separated for quite some time. A very high discontinuity stress which existed at the longitudinal welds between the hot well and the heater shell was revealed by stress analysis. It was interpreted that the cracks had originated shortly after the heater was put into operation and propagated slowly initially. The rate of propagation was interpreted to have increased due to discontinuity stresses greater than yield strength of the material. It was concluded that the brine heater cracked and fractured because it was overstressed in normal operation. The heater design was modified to make the heater shell and the hot well two separate units. A relief valve was recommended in the heater or in the steam line near the heater.
Book Chapter
Failure of Nickel-Base Superalloy Heat-Exchanger Tubes in a Black Liquor Heater
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001311
EISBN: 978-1-62708-215-0
... Abstract Several nickel-base superalloy (UNS N06600) welded heat-exchanger tubes used in processing black liquor in a kraft paper mill failed prematurely. Leaking occurred through the tube walls at levels near the bottom tube sheet. The tubes had been installed as replacements for type 304...
Abstract
Several nickel-base superalloy (UNS N06600) welded heat-exchanger tubes used in processing black liquor in a kraft paper mill failed prematurely. Leaking occurred through the tube walls at levels near the bottom tube sheet. The tubes had been installed as replacements for type 304 stainless steel tubes. Visual and stereoscopic examination revealed three types of corrosion on the inside surfaces of the tubes: uniform attack, deeper localized corrosive attack, and accelerated uniform attack. Metallographic analysis indicated that pronounced dissimilar-metal corrosion had occurred in the base metal immediately adjacent to the weld seam. The corrosion was attributed to exposure to nitric acid cleaning solution and was accelerated by galvanic differences between the tubes and a stainless steel tube sheet and between the base metal of the tubes and their dendritic weld seams. A change to type 304 stainless steel tubing made without dendritic weld seams was recommended.
Book Chapter
Fatigue Failure of Regenerator Screens in a High-Frequency Stirling Engine
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001033
EISBN: 978-1-62708-214-3
... screens after 80 h of engine operation. (a) Damaged top screen (closest to heater tubes). (b) Inside screen (about two-thirds into the stack). Fig. 5 Higher-magnification view of screens in Fig. 4 . Note the loss of screen wires and particles filling screen openings. A considerable...
Abstract
An investigation of a Stirling engine after an aborted test run revealed that the regenerator screens had suffered substantial damage. During the run, the individual screens oscillated as the helium working fluid was shuttled through the regenerator. In localized areas, the 41 mu m (1600 mu in.) diam type 304 stainless steel wire screening had been torn and pieces were missing. Scanning electron microscope revealed that the fracture had occurred at wire crossover locations by a fatigue mechanism. The problem was solved by sintering the individual screens into a single unit.
Image
Micrographs from a service-exposed chromium-molybdenum steel fired heater t...
Available to Purchase
in Elevated-Temperature Life Assessment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 16 Micrographs from a service-exposed chromium-molybdenum steel fired heater tube. (a) Low magnification showing the entire tube wall in cross section. Original magnification: 25×. (b) Higher magnification from near the exterior surface showing the carburized microstructure. Original
More
Image
Rupture time versus minimum creep rate for service-exposed 9Cr-1Mo steel he...
Available to Purchase
in Elevated-Temperature Life Assessment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 4 Rupture time versus minimum creep rate for service-exposed 9Cr-1Mo steel heater tubes of different vintage and operating conditions
More
Image
Regenerator screens after 80 h of engine operation. (a) Damaged top screen ...
Available to Purchase
in Fatigue Failure of Regenerator Screens in a High-Frequency Stirling Engine
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 4 Regenerator screens after 80 h of engine operation. (a) Damaged top screen (closest to heater tubes). (b) Inside screen (about two-thirds into the stack).
More
Image
Energy-dispersive spectroscopic analysis of inner surface of the make-up wa...
Available to Purchase
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 48 Energy-dispersive spectroscopic analysis of inner surface of the make-up water heater tube Elements Relative weight percent Oxygen 4.15 Aluminum 0.85 Silicon 1.30 Chlorine (chloride) 0.38 Chromium 18.21 Iron 67.55 Nickel 7.56
More
1