1-20 of 259 Search Results for

Heat-affected zone

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001156
EISBN: 978-1-62708-218-1
... nuts. The steel piston rod fractured at the axle end leaving approximately 5 mm of rod welded to a securing ferrule. The failure was caused by a fatigue mechanism. Small surface cracks formed during welding in the heat-affected zone close to an unradiused shoulder in the piston. Under alternating...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001683
EISBN: 978-1-62708-234-1
... occurred at welds and consisted of large subsurface void formations with pinhole penetrations of the surfaces. Corrosive attack initiated in the heat affected zones of the welds, usually immediately adjacent to fusion lines. Stepwise grinding, polishing, and etching through the affected areas revealed that...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001618
EISBN: 978-1-62708-219-8
... Abstract Arms bolted to powerline towers were falling off two weeks after installation. Metallurgical and chemical analysis performed on the base metal, weld zone, and heat-affected zone showed acceptable quality material. Residual stress appeared to be responsible for the high failure rate...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
... its resistance to chloride and sulfuric acid dewpoint corrosion under conditions potentially present in the HRSG low-pressure feedwater economizer. Intergranular corrosion and cracking were found in the weld metal and heat-affected zones. The hardness in these regions was up to 35 HRC, and the weld...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001478
EISBN: 978-1-62708-220-4
... penetration by molten copper may have played a role, but no evidence was seen. An absence of chromium plating at the region of the heat-affected zone was also observed but could not be explained. Unfortunately, the end portion of the shaft was not available for examination. Overheating Shafts (power...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001704
EISBN: 978-1-62708-218-1
... examinations revealed a classic case of microbiologically influenced corrosion (MIC), which preferentially attacked the heat affected zones of the tank welds, resulting in the leaks. Heat affected zone Leakage Water tanks Welded joints 304 UNS S30400 Biological corrosion The experienced...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047641
EISBN: 978-1-62708-235-8
... atmospheric contamination. Contaminants Gas tungsten arc welding Heat affected zone Oxygen Stress concentration Thermal stresses Ti-6Al-4V UNS R56406 Joining-related failures A Ti-6Al-4V alloy pressure vessel failed during a proof-pressure test, fracturing along the center girth weld. The...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048091
EISBN: 978-1-62708-224-2
.... All flame-cut surfaces were ground to remove notches. Flame cutting Heat affected zone Normalizing (heat treatment) Weldments 1020 UNS G10200 Joining-related failures Brittle fracture A section broke from a stop-block guide ( Fig. 1 ) on a crane runway and fell to the floor. A system...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047423
EISBN: 978-1-62708-236-5
... not been used to make the weld. Repair welds in high-strength steel castings should always be made with low-hydrogen filler materials. Filler metals Heat affected zone Repair welding Fe-0.18C-1.37Ni-0.42Cr-0.31Mo Fatigue fracture Joining-related failures A large shackle used in...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047545
EISBN: 978-1-62708-236-5
... was preheated to a temperature above which martensite would form. After completion, the weld was covered with an asbestos blanket, and heating was continued for 24 h. During the next 24 h, the temperature was slowly lowered. The result was a crack-free weld. Heat affected zone Martensite Post...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047521
EISBN: 978-1-62708-218-1
... channel extension. Also visible are the cross l-beam, supporting plate, and support-bracket casting. (b) Photograph of section toward the rear showing mating fracture surface and the fracture origin. (c) Macrograph of the channel flange showing weld metal, HAZ, and non-heat-affected zone. Polished, and...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047579
EISBN: 978-1-62708-234-1
...-gradient and phase-change stresses. Joining the studs to the flanges by welding should be discontinued. They should be attached by screw threads, using a key and keyway to prevent turning in service. Flanges Heat affected zone Phase transformations Studs 414 UNS S41400 Joining-related failures...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047602
EISBN: 978-1-62708-235-8
... the stainless steel in an area under residual tensile stress. The copper for the fixtures was replaced by aluminum. No further cracking was encountered. Gas tungsten arc welding Grain boundaries Heat affected zone Residual stress Tensile stress 21Cr-6Ni-9Mn Liquid metal induced...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047590
EISBN: 978-1-62708-217-4
... induced by severe vibration in service. Additional tube clamps were provided to damp the critical vibrational stresses. No further fuel-line fractures were encountered. Engine components Heat affected zone Tubes Vibration 347 UNS S34700 Fatigue fracture Joining-related failures A weld in...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089793
EISBN: 978-1-62708-235-8
... of the weld caused by the weld design, weld sequence, and thermal effects. Recommendations included removing the old weldment to a depth beyond the crack and replacing this with a softer weld metal layer before making the main weld onto the softer layer. Heat affected zone Inclusions Joint...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047392
EISBN: 978-1-62708-221-1
... fracture of the roadarm was caused by a combination of too high a carbon equivalent in the castings and the lack of preheating and postheating during the welding procedure. A pre-heat and tempering after welding were added to the welding procedure. Gas metal arc welding Heat affected zone Sand...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091528
EISBN: 978-1-62708-229-7
... conclusion that the failure was caused by SCC due to stress, sensitization, and environment. Recommendations included replacing all pipe sections and installing them using low-heat-input, multiple-pass welding procedures. Heat affected zone Integranular fracture Piping 304 UNS S30400 Joining...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0048087
EISBN: 978-1-62708-231-0
.... Heat affected zone Martensite Shielded metal arc welding Vibrations Welded joints Welding parameters 1020 1050 UNS G10200 UNS G10500 Fatigue fracture Figure 1(a) shows a hoist carriage tram-rail assembly fabricated by shielded metal arc welding the leg of a large T-section 1020 steel...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0047529
EISBN: 978-1-62708-230-3
... the undercut, which was an inherent stress raiser. Recommendations included revised joint design to ensure full root penetration. Fillet welds Heat affected zone Joint design Papermaking Shells (structural forms) Steam preheaters Weld defects Welded steel (Steel, general) Joining-related...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091394
EISBN: 978-1-62708-227-3
.... Heat affected zone Piping Pitting Sea water 316L 316 UNS S31600 Pitting corrosion Stagnant seawater can be quite destructive to some alloy systems. An austenitic stainless steel piping used in the fire-sprinkler system in a large saltwater passenger and car ferry failed by rapid leaking. The...