Skip Nav Destination
Close Modal
Search Results for
Hardenability
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 435 Search Results for
Hardenability
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
... Abstract Hardenability evaluation is typically applied to heat treatment process control, but can also augment standard metallurgical failure analysis techniques for steel components. A comprehensive understanding of steel hardenability is an essential complement to the skills...
Abstract
Hardenability evaluation is typically applied to heat treatment process control, but can also augment standard metallurgical failure analysis techniques for steel components. A comprehensive understanding of steel hardenability is an essential complement to the skills of the metallurgical failure analyst. The empirical information supplied by hardenability analysis can provide additional processing and service insight to the investigator. The intent of this paper is to describe some applications of steel thermal response concepts in failure analysis, and several case studies are included to illustrate these applications.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001214
EISBN: 978-1-62708-235-8
... Abstract A case-hardened sleeve made of C 15 (Material No. 1.0401) was flattened at two opposing sides and had cracked open at these places, the crack initiating at a face plane. The wall of the sleeve was 9 mm thick, but the flat ends were machined down to 5.5 mm from the outside. The customer...
Abstract
A case-hardened sleeve made of C 15 (Material No. 1.0401) was flattened at two opposing sides and had cracked open at these places, the crack initiating at a face plane. The wall of the sleeve was 9 mm thick, but the flat ends were machined down to 5.5 mm from the outside. The customer had specified a 2 mm case depth and a hardness of at least HRC 55 at a depth of 1.5 mm. An etched cross section of the cracked end showed that the case layer had a depth of 2.3 mm, so that the sleeve was almost through-hardened at the flat ends. While the core material with the full wall thickness had the quench structure of low-carbon steel, the structure of the flattened area consisted of coarse acicular martensite with a small amount of pearlite (quench troostite) and ferrite. Therefore the sleeve was overheated and probably quenched directly from case. To prevent damage, it would have been necessary to have a lower case depth, carburize less deeply, and prevent overheating that causes brittleness and leads also to increased case depth, or else use a fine-grained steel of lower hardenability.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001212
EISBN: 978-1-62708-235-8
... Abstract Operation handles produced from C45 steel showed many fine cracks at the flame hardened noses. The cracks ran from the corners of indentations caused by the tool during alignment. Metallographic investigation showed the nose was overheated during flame hardening. It was concluded...
Abstract
Operation handles produced from C45 steel showed many fine cracks at the flame hardened noses. The cracks ran from the corners of indentations caused by the tool during alignment. Metallographic investigation showed the nose was overheated during flame hardening. It was concluded that the numerous hardening cracks were caused by abrupt quenching from over-heating temperature and by local stress concentrations due to indentations of the tool caused during alignment.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
... that no suspension was involved Abstract Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel...
Abstract
Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel. Bearings ride directly on the axles. This article provides a fractography/fracture mechanic approach to making the determination of when the axle failed. Full scale tests on axle assemblies and suspensions provided data for fracture toughness in the induction hardened outer case on the axle. These tests also demonstrated that roller bearing indentions on the axle journal, cross pin indentation on the end of the axle, and axle bending can be accounted for by spring energy release following axle failure. Pre-existing cracks in the induction hardened axle are small and are often difficult to see without a microscope. The pre-existing crack morphology was intergranular fracture in the axles studied. An estimate of the force required to cause the axle fracture can be made using the measured crack size, fracture toughness determined from these tests, and linear elastic fracture mechanics. The axle can be reliably said to have failed prior to rollover if the estimated force for failure is equal to or less than forces imposed on the axle during events leading to the rollover.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047387
EISBN: 978-1-62708-225-9
... Abstract Induction-hardened teeth on a sprocket cast of low-alloy steel wore at an unacceptably high rate. A surface hardness of 50 to 51 HRC was determined; 55 HRC minimum had been specified. Analysis revealed that the alloy content of the steel was adequate for the desired hardenability...
Abstract
Induction-hardened teeth on a sprocket cast of low-alloy steel wore at an unacceptably high rate. A surface hardness of 50 to 51 HRC was determined; 55 HRC minimum had been specified. Analysis revealed that the alloy content of the steel was adequate for the desired hardenability but that the specified carbon content (0.29%) was too low. The low specified carbon content resulted in unacceptably low hardness. Because hardness largely controls wear rate, an early failure occurred. The specification for this part was changed so that a higher carbon content (0.45% C) was required.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0048596
EISBN: 978-1-62708-221-1
...-bolts fractured in fatigue because the bolt material had poor hardenability relative to the diam of the bolts. The bolt material was changed from 1045 steel to 1527 steel, a warm-finished low-alloy steel. The diameter of the bolts was reduced to 27.2 mm and the threads were rolled rather than cut...
Abstract
SAE grade 5 U-bolts were used to fasten auxiliary dual wheels to the axles on a farm tractor. Under typical farm usage, the bolts are expected to have infinite life. However, several U-bolts made of 29 mm diam rod broke after less than 100 h of service. The bolt legs in which the failures occurred were all in the same position relative to the direction of wheel rotation. Visual examination showed the break was a fairly flat transverse fracture in the threaded section between the washer and the nut. The appearance of the fracture surfaces was characteristic of failure by low-cycle fatigue, with a smooth matte fatigue failure region showing beach marks and generally extending over about 40 to 60% of the fracture surface, which indicated severe overload. The point of initiation of fatigue was at the root of the last thread at the edge of the nut on the side toward this washer. The U-bolts fractured in fatigue because the bolt material had poor hardenability relative to the diam of the bolts. The bolt material was changed from 1045 steel to 1527 steel, a warm-finished low-alloy steel. The diameter of the bolts was reduced to 27.2 mm and the threads were rolled rather than cut.
Image
in Cracks in Flame Hardened Operation Handles
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 Handle etched with 10% nital to show the flame hardened zone (dark). 1 ×
More
Image
in Cracks in Flame Hardened Operation Handles
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 4 Structure of the flame hardened top. 500 ×
More
Image
Published: 01 June 2019
Fig. 5 Longitudinal crack in a hardened and tempered bar of nickel-chromium steel, cross section, etched in nital. 10 ×
More
Image
Published: 01 June 2019
Fig. 6 Longitudinal crack in a hardened and tempered spring washer of silicon steel, cross section, etched in picral. 100 ×
More
Image
Published: 01 June 2019
Fig. 7 a). Cracks in hardened and tempered axle journals of manganese-vanadium steel, cross sections, etched in nital. 100 ×. Branch of a long crack. b). Cracks in hardened and tempered axle journals of manganese-vanadium steel, cross sections, etched in nital. 100 ×. Short crack.
More
Image
Published: 01 June 2019
Fig. 8 Edge structure of a file blank, which remained too soft during hardening. Cross section, etched in nital. 100 ×
More
Image
in Brittle Fracture of a Case-Hardened Component Because of Low Impact Resistance and Grinding Burns
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 Main-clutch stop arm of 8620 steel on which the case-hardened latch tip failed in service from brittle fracture because of low impact resistance and grinding burns. (a) View of stop arm showing location of fracture in latch tip, and detail showing original and improved designs of latch
More
Image
in Metallic Inclusions in Steel
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 3 Foreign inclusion in a hardened piece of chromium steel with approx. 1% C and 1.5% Cr. Longitudinal section. Etch: Picral 25×
More
Image
in Metallic Inclusions in Steel
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 4 Foreign inclusion in a hardened piece of chromium steel with approx. 1% C and 1.5% Cr. Longitudinal section. Etch: Picral 500×
More
Image
Published: 01 December 1992
Fig. 7 Scanning electron micrograph of case-hardened core fracture boundary of second fracture surface. 235×.
More
Image
Published: 01 December 1992
Fig. 8 Scanning electron micrograph of case-hardened fracture surface where local cleavage occurred. 2000×.
More
Image
in Effect of Strain Rate on the Failure Mode of a Rear Axle
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 12 Fracture surface of subsized impact coupon prepared from the hardened perimeter of the axle, showing cleavage rupture with river patterns. 3400×.
More
Image
Published: 01 December 1993
Fig. 12 Microstructure of the case-hardened gear teeth, consisting of martensite and dispersed carbides along with a few manganese sulfide inclusions. The average hardness is 55 HRC. Nital etchant. (a) 154×(b) 616×
More
1