1-20 of 553 Search Results for

Hardenability

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
... Abstract Hardenability evaluation is typically applied to heat treatment process control, but can also augment standard metallurgical failure analysis techniques for steel components. A comprehensive understanding of steel hardenability is an essential complement to the skills...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001214
EISBN: 978-1-62708-235-8
... Abstract A case-hardened sleeve made of C 15 (Material No. 1.0401) was flattened at two opposing sides and had cracked open at these places, the crack initiating at a face plane. The wall of the sleeve was 9 mm thick, but the flat ends were machined down to 5.5 mm from the outside. The customer...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001212
EISBN: 978-1-62708-235-8
... Abstract Operation handles produced from C45 steel showed many fine cracks at the flame hardened noses. The cracks ran from the corners of indentations caused by the tool during alignment. Metallographic investigation showed the nose was overheated during flame hardening. It was concluded...
Image
Published: 01 January 2002
Fig. 17 S-N curves for as-hardened (gear A) and as-hardened plus double shot peened (gear B) gears. Source: Ref 41 More
Image
Published: 01 January 2002
Fig. 92 Effect of hardening by plastic deformation. (a) Case-hardened surface. (b) Non-case-hardened surface. Both 243×. Source: Ref 30 More
Image
Published: 15 January 2021
Fig. 13 Comparison of carbon profiles of case-hardened and through-hardened bearing steels More
Image
Published: 30 August 2021
Fig. 21 Illustration of (a) isotropic hardening, (b) kinematic hardening, (c) mixed hardening, and (d) resulting stress-strain curves under reverse yielding. Adapted from Ref 71 More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
... Abstract Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel. Bearings ride...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047387
EISBN: 978-1-62708-225-9
... Abstract Induction-hardened teeth on a sprocket cast of low-alloy steel wore at an unacceptably high rate. A surface hardness of 50 to 51 HRC was determined; 55 HRC minimum had been specified. Analysis revealed that the alloy content of the steel was adequate for the desired hardenability...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0048596
EISBN: 978-1-62708-221-1
...-bolts fractured in fatigue because the bolt material had poor hardenability relative to the diam of the bolts. The bolt material was changed from 1045 steel to 1527 steel, a warm-finished low-alloy steel. The diameter of the bolts was reduced to 27.2 mm and the threads were rolled rather than cut...
Image
Published: 01 June 2019
Fig. 1 Induction-hardened 1151 steel rotor shaft in which a spline fractured because of a seam. Top left: Configuration and dimensions (given in inches). Section A-A: Micrographs of section through broken spline, showing shape of fracture (arrow A), root of seam (arrow B), and decarburized More
Image
Published: 01 June 2019
Fig. 1 Photomicrographs showing (a) white hardened layer near surface, (b) untempered martensitic structure, at 1000× More
Image
Published: 01 June 2019
Fig. 16 Cracking, deformation, and a white hardened layer at the journal surface of Crank #1 More
Image
Published: 01 June 2019
Fig. 5 Longitudinal section a of Fig. 2 with built-up weld and contiguous hardened region. Etch: picral. 3 × More
Image
Published: 01 June 2019
Fig. 6 Structure in longitudinal section a, etch: picral. 500 ×. Hardened region. More
Image
Published: 01 June 2019
Fig. 7 Longitudinal section a with built-up weld (left) and hardened region with hardness crack, etch: picral, 50 × More
Image
Published: 01 June 2019
Fig. 5 Local melting and hardening caused by an electrical engraving tool, etched in alcoholic picric acid. 200× More
Image
Published: 01 June 2019
Fig. 8 a). Proximity of blade end. Eroded inlet edge with hardened region and Vickers hardness indentations, transverse section, etch: V2A-solution. 10× b). Center of blade. Eroded inlet edge with hardened region and Vickers hardness indentations, transverse section, etch: V2A-solution. 10× More
Image
Published: 01 June 2019
Fig. 3 Stress crack in hardened zone of broken spindle (left: weld), longitudinal section, etch: V2A-pickling solution. 100 × More