Skip Nav Destination
Close Modal
Search Results for
Hard-drawn carbon steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 99 Search Results for
Hard-drawn carbon steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0051294
EISBN: 978-1-62708-221-1
... Abstract An agricultural tine, which is a relatively large double torsion spring with outer legs that are used to sweep through hay or other crops and turn them over, had failed. It was made hard-drawn carbon steel. Bending fatigue was revealed by visual examination to be almost certainly...
Abstract
An agricultural tine, which is a relatively large double torsion spring with outer legs that are used to sweep through hay or other crops and turn them over, had failed. It was made hard-drawn carbon steel. Bending fatigue was revealed by visual examination to be almost certainly the cause of failure. The fatigue fracture origin was found on the inside surface of the legs at the point where they joined the coiled body of the spring. It was established that the tines after being wound up by loading with hay, sprung back through the neutral unloaded position and into the unwind direction. This movement into the unwind direction was concluded to be happening often enough to initiate fatigue. The stress relieving temperature was recommended to be increased to reduce the residual stresses from coiling and hence improve fatigue performance.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0092131
EISBN: 978-1-62708-234-1
... spring and an outer spring (both of patented and drawn high-carbon steel wire) taken from another cylinder in the same engine were examined in the laboratory to determine why one had distorted and the other had not. Investigation (visual inspection, microstructure examination, and hardness testing...
Abstract
The engine of an automobile lost power and compression and emitted an uneven exhaust sound after several thousand miles of operation. When the engine was dismantled, it was found that the outer spring on one of the exhaust valves was too short to function properly. The short steel spring and an outer spring (both of patented and drawn high-carbon steel wire) taken from another cylinder in the same engine were examined in the laboratory to determine why one had distorted and the other had not. Investigation (visual inspection, microstructure examination, and hardness testing) supported the conclusion that the engine malfunctioned because one of the exhaust-valve springs had taken a 25% set in service. Relaxation in the spring material occurred because of the combined effect of improper microstructure (proeutectoid ferrite) plus a relatively high operating temperature. Recommendations included using quenched-and-tempered steel instead of patented and cold-drawn steel or using a more expensive chromium-vanadium alloy steel instead of plain carbon steel; the chromium-vanadium steel would also need to be quenched and tempered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048031
EISBN: 978-1-62708-224-2
.... As a result of abrasion, a hard layer of martensite was formed on the wire. The wire was made susceptible to fatigue cracking, while bending around the sheave, by this brittle surface layer. The carbon content and tensile strength of the wire was found lower than specifications. As a corrective measure...
Abstract
The 16 mm diam 6 x 37 fiber-core improved plow steel wire rope on a scrapyard crane failed after two weeks of service under normal loading conditions. This type of rope was made of 0.71 to 0.75% carbon steel wires and a tensile strength of 1696 to 1917 MPa. The rope broke when it was attached to a chain for pulling jammed scrap from the baler. The rope was heavily abraded and several of the individual wires were broken. a uniform cold-drawn microstructure, with patches of untempered martensite in regions of severe abrasion and crown wear was revealed by metallographic examination. As a result of abrasion, a hard layer of martensite was formed on the wire. The wire was made susceptible to fatigue cracking, while bending around the sheave, by this brittle surface layer. The carbon content and tensile strength of the wire was found lower than specifications. As a corrective measure, this wire rope was substituted by the more abrasion resistant 6 x 19 rope.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001581
EISBN: 978-1-62708-235-8
...-induced loss in yield strength. Room temperature tensile and hardness test results Table 3 Room temperature tensile and hardness test results Alloy and condition 0.2% YS MPa (ksi) TS MPa (ksi) Vickers Hardness 304 cold-drawn 1240 (179) 1373 (199) 409 304 exposed for three years...
Abstract
A heavily worked 304 stainless steel wire basket recrystallized and distorted while in service at 650 deg C (1200 deg F). This case study demonstrates that heavily cold worked austenitic stainless steel components can experience large losses in creep strength, and potentially structural collapse, under elevated temperature service, even at temperatures more than 300 deg C (540 deg F) below the normal solution annealing temperature. The creep strength of the recrystallized 304/304L steel was more than 1000 times less than that achievable with solution annealed 304H. These observations are consistent with limitations (2000 Addendum to ASME Boiler and Pressure Vessel Code) on the use of cold worked austenitic stainless steels for elevated temperature service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001646
EISBN: 978-1-62708-219-8
.... The testing was conducted in a pneumatically operated microhardness tester, and the Vickers hardness (Vickers pyramid number: VPN) values were determined under 50 g applied load. The measurements were conducted on phases viewed at 400× magnification, and the average VPN values were determined from...
Abstract
Locked coil wire ropes, by virtue of their unique design and construction, have specialized applications in aerial ropeways, mine hoist installations, suspension bridge cables, and so forth. In such specialty ropes, the outer layer is constructed of Z-profile wires that provide not only effective interlocking but also a continuous working surface for withstanding in-service wear. The compact construction and fill-factor of locked coil wire ropes make them relatively impervious to the ingress of moisture and render them less vulnerable to corrosion. However, such ropes are comparatively more rigid than conventional wire ropes with fiber cores and therefore are more susceptible to the adverse effects of bending stresses. The reasons for premature in-service wire rope failures are rather complex but frequently may be attributed to inappropriate wire quality and/or abusive operating environment. In either case, a systematic investigation to diagnose precisely the genesis of failure is desirable. This article provides a microstructural insight into the causes of wire breakages on the outer layer of a 40 mm diam locked coil wire rope during service. The study reveals that the breakages of Z-profile wires on the outer rope layer were abrasion induced and accentuated by arrays of fine transverse cracks that developed on a surface martensite layer.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001075
EISBN: 978-1-62708-214-3
..., the inability of the wires to resist pitting corrosion became an important consideration. Data on the properties of cold-worked type 316 stainless steel cold-drawn wire ( Table 2 ) show that the hardness for the “ 3 4 hard” condition and a diameter of 2.6 mm(0.1 in.) should be 29 to 32 HRC...
Abstract
Several type 316L stainless steel wires in an electrostatic precipitator at a paper plant fractured in an unexpectedly short time. Failed wires were examined using optical and scanning electron microscope, and hardness tests were conducted. Fractography clearly established that fracture was caused by fatigue originating at corrosion pits on the surface of the wire. It was recommended that higher-molybdenum steel in the annealed condition be used to combat pitting corrosion.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001125
EISBN: 978-1-62708-214-3
... (6.1 in.) long, with 66 mm (2.6 in.) on each side for compression assembly. Such connectors have a long record of trouble-free performance. The steel cable was 0.67% C hot-drawn plain carbon steel, also galvanized for corrosion protection. Fig. 1 Schematic of the failed connector. Specimen...
Abstract
An 1100 aluminum alloy connector of a high-tension aluminum conductor steel-reinforced (ACSR) transmission cable failed after more than 20 years in service, in a region of consider able industrial pollution. The steel core was spliced with a galvanized 1020 carbon steel sheath. Visual examination showed that the connector had undergone considerable plastic deformation and necking before fracture. The steel sheath was severely corroded, and the steel splice was pressed off-center in the axial direction inside the connector. Examination of the fracture surface and micro-structural analysis indicated that the failure was caused by mechanical overload, which occurred because of weakening of the steel support cable by corrosion inside the fitting. The corrosion was ascribed to defective assembly of the connector which allowed moisture penetration.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001193
EISBN: 978-1-62708-229-7
... under investigation Mean of 3 blades Specification for X 20 Cr 13 Breaking strength (kp/mm 2 ) 76,8 65-30 Yield point (kp/mm 2 ) 60,8 min. 45 Strain δ5 18 min. 16 Necking (%) 64 - Notch toughness (kpm/cm 2 ) 7.6 min. 4 Hardness (kp/mm 2 ) 227 180–250...
Abstract
When a steam turbine was put out of service, cracks were noticed on many of the blades in the low pressure section round the stabilization bolts and perpendicular to the blade axis. The blades were made from chrome alloy steel X20-Cr13 (Material No. 1.402). When the bolts were brazed into the blades inadmissible localized overheating of the steel must have occurred, which resulted in transformation stresses and hence reduced deformability. The cracks arose as a consequence of careless brazing. Whether the cracks should be considered as stress cracks over their entire extent or partially as fatigue cracks produced by vibration in the operation of the turbine as a result of steplike growing of microcracks could not be deduced from the fracture surfaces. Microfractography showed that the cracks developed in stages.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001388
EISBN: 978-1-62708-215-0
... composition of a failed bolt was determined by spectral analysis. The results—0.45% C, 0.17% Si, 0.68% Mn, 0.011% S, 1.05% Cr, and 0.18% Mo—satisfied the requirements of J1S SCM435. Mechanical Properties Hardness Microhardness testing using a 300 g load was conducted along the longitudinal section...
Abstract
JIS SCM435 steel bolts that connected the slewing ring to the base carrier on a truck crane failed during the lifting of steel piles. The bolts were double-ended stud types and had been in operation for 5600 h. Failure occurred in the root of the external thread that was in contact with the first internal thread in the slewing ring. Examination of plastic carbon replicas indicated that failure was the result of fatigue action. Failure was attributed to overloading during service and increased stress concentration on a few bolts due to nonuniform separations around the slewing ring. A design change to achieve equal separation between bolt holes was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001771
EISBN: 978-1-62708-241-9
... the precipitate composition. Brinell hardness test was used to evaluate mechanical strength. Results and Discussion Visual Examination Figure 1 shows visual photography of four specimens. As can be seen in this figure, the unused and unfailed tube did not show any special effect ( Fig. 1a , b...
Abstract
Radiant tubes that failed prematurely in an ethylene cracking furnace were analyzed to determine the cause of their early demise. The tubes were made from austenitic heat-resistant steel and cracked along their longitudinal axis. New and used tubes were compared using scanning electron microscopy, energy dispersive x-ray spectrometry, and mechanical property testing. This provided critical information and revealed that improper coking and decoking had removed the protective oxide layer (Cr 2 O 3 ) that normally prevents coke deposits from forming on exposed surfaces. Without this layer, coke readily accumulates on the surface of the tubes, fueling carbon diffusion into the metal and a corresponding degradation in microstructure and loss of ductility at high temperatures.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001034
EISBN: 978-1-62708-214-3
... in Fig. 5 . Fig. 8 EDS analysis of residue found in the bottom of the pit shown in Fig. 3 . Chemical analysis/identification Material and Weld Table 1 details the results of chemical analyses and hardness tests performed on the base metal and weld areas of the sections...
Abstract
The interior surface of a type 316L stainless steel trailer barrel used to haul various chemicals showed evidence of severe pitting after less than 1 year of service. Two sections were cut from the barrel and microscopically examined. Metallographic sections were also prepared at the weld areas and away from the weld zones. Terraced, near-surface pits with subsurface caverns and a high level of sulfur in the pit residue, both indicative of bacteria-induced corrosion, were found. No evidence of weld defects or defective material was present. Testing of the water used at the wash station and implementation of bacteria control measures (a special drying process after washing and use of a sanitizing rinse) were recommended.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
... fracture of structures, especially welded ones, that are subjected to cold-temperature conditions in service. Use of a fine-grain, normalized, relatively low-carbon (0.20% C) steel will generally ensure adequate impact resistance and freedom from high hardness in the heat-affected zone (HAZ) of welds...
Abstract
This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks, chains, wire rope, slings, beams, bales, and trunnions; and built-in members such as shafts, gears, and drums.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0001784
EISBN: 978-1-62708-218-1
... in.) radius shown in Fig. 1 . The lever is pivoted in a ball socket, and the maximum load transmitted at end A is 1.8 kN (400 lbf). The steel is 1049 hardened to 269 to 285 HB, with properties as given in Table 1 . Fatigue strength of heat-treated wrought steel of various Brinell hardness ranges...
Abstract
Field fatigue failures occurred in a hand-operated gear shift lever mechanism made of 1049 medium carbon steel hardened to 269 to 285 HB. The failures occurred in the 3.18 mm (0.127 in.) radius. Redesign increased the shift lever's diameter to 25 mm (1 in.) and the radius to 4.75 mm (0.187 in.). Also, instead of the as-forged surface, it was expedient to machine the radius. The as-forged surface at 360 MPa (52 ksi) maximum working stress would not ensure satisfactory life because the recalculated maximum stress was 390 MPa (57 ksi). However, the machined surface with a maximum working stress of 475 MPa (69 ksi) gives a safe margin above the 390 MPa (57 ksi) requirement for design stress. Interpreting these values, the forged surface should have a life expectancy of 1,000,000 cycles of stress. However, because the load cycle was somewhat uncertain, the machined radius was chosen to obtain a greater margin of safety. Redesigning eliminated the failures.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... factors: the accuracy of the hardness testing and characteristically consistent ratios of yield strength to tensile strength for the grades of steel commonly used in spring wire. Conclusions The engine malfunctioned because one of the exhaust-valve springs had taken a 25% set in service. Relaxation...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
..., but the microstructure of the distorted spring contained small amounts of proeutectoid ferrite. Although the composition of the spring alloy was unknown, the microstructure indicated that the material was patented and cold-drawn high-carbon steel wire. The distorted spring had a hardness of 43 HRC, and the longer spring...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003566
EISBN: 978-1-62708-180-1
... a variety of steels and followed their performance over a period of time. The steels tested included plain carbon and low-alloy steels, and the hardness of each hammer complied with the hardness limits required by BS 876 (520 to 640 HV; 50.5 to 57.5 HRC). Although this type of testing yields useful...
Abstract
This article briefly reviews the analysis methods for spalling of striking tools with emphasis on field tests conducted by A.H. Burn and on the laboratory tests of H.O. McIntire and G.K. Manning and of J.W. Lodge. It focuses on the metallography and fractography of spalling. The macrostructure and microstructure of spall cavities are described, along with some aspects of the numerous specifications for striking/struck tools. The article also describes the availability of spall-resistant metals and the safety aspects of striking/struck tools in railway applications.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001722
EISBN: 978-1-62708-236-5
... Plating of Steel”—D.T.D. 916A (Superseding D.T.D. 916), December 1955, and the salient points which affect the service life of hard chromium-plated parts are summarised below: The process is for use primarily on carbon and low alloy steels which require a hard surface and is regarded...
Abstract
The crankshaft of a 37.5-hp, 3-cylinder oil engine was examined. The engine had been dismantled for the purpose of a general overhaul and in the course of this work the crankpins were chromium-plated before regrinding. The engine was returned to service and after running for 290 h the crankshaft broke at the junction of the No. 3 crankpin and the crankweb nearest to the flywheel. A typical fatigue crack had originated at a number of points in the root of the fillet to the web. In its early stages it ran slightly into the web but turned back to the pin when it encountered the oil hole. The shaft had been made from a heat-treated alloy steel. The thickness of the plating was approximately 0.025 in. and numerous cracks were visible in it, several of which had given rise to cracks in the steel below. The primary cause of the crankshaft failure was the plating of the crankpins. The presence of the grooves alone would result in considerable intensification of stress in zones which are normally highly stressed, while the crazy cracking introduced a multiplicity of stress-raisers of a type almost ideal from the point of view of initiating fatigue cracks.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001800
EISBN: 978-1-62708-241-9
... energy, or even lightning strikes. Fig. 6 SEM image of a remelted, arc-damage area at one fracture origin (arrow) Fig. 7 Detail of one remelt area at a fatigue origin Untempered martensite is a hard, brittle phase with significant residual stresses that can often lead...
Abstract
An electric transport vehicle, similar to an electric trolley or subway rail car, experienced frequent breakdowns due to in-service fractures of torsion springs that support the weight of an overhead electric pickup assembly. Scanning electron microscopy and metallographic examinations determined that the fractures stemmed from electric arc damage. Intergranular quench cracks in the transformed untempered martensite on the surface of the spring provided crack initiations that propagated during operation causing fatigue fracture.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001064
EISBN: 978-1-62708-214-3
... Sulfur 160 ppm 250 mg/L Nitrate 40 ppm 10.0 (as N) Bicarbonate 350 ppm as CaCO 3 … Calcium hardness 390 ppm as CaCO 3 … Magnesium hardness 311 ppm as CaCO 3 … Dissolved iron 0 ppm (very high suspended iron) 0.3 mg/L Oxygen <1 ppm … Temperature 35 °C (95 °F...
Abstract
Several hundred leaks were reported in the type 304 stainless steel pipelines, vessels, and tanks of a chemical plant at a tropical location within a few weeks after startup. Investigation of the failure involved a site visit, metallographic examination and analysis of the material, analysis of hydrotest waters, and microbiological examination of slime that had formed in certain pipework sections. It was determined that the failure resulted from microbially induced corrosion promoted by the use of poor-quality hydrotest water and uncontrolled hydrotesting practice. Use of appropriate hydrotesting procedures was recommended to prevent similar failures.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001755
EISBN: 978-1-62708-241-9
... from the balls/groove wear or from some other source. The material of the inner and outer races and balls was T1 (tungsten high-speed steel). The high alloying and high carbon content produced a large number of hard, wear-resistant carbides in the microstructure [3] to achieve high hardness...
Abstract
An aero engine failed due to the misalignment of the ball bearing fitted on the main shaft of the engine. The aero engine incorporates two independent compressors: a six-stage axial flow LP compressor and a nine-stage axial flow HP compressor. The bearing under consideration is a HP location bearing and is fitted at the rear of the nine-stage compressor. It was supposed to operate for at least 5000 h, but failed catastrophically after 1300 h, rendering the engine unserviceable. Unusually high stresses caused by misalignment and uneven axial loading resulted in the generation of fatigue crack(s) in the inner race. When the crack reached the critical size, the collar of the race fractured, causing subsequent damage. The cage also failed due to excessive stresses in the axial direction, and its material was smeared on the steel balls and the outer race.
1