Skip Nav Destination
Close Modal
By
Sara Fernandez, María José Quintana, José Ovidio García, Luis Felipe Verdeja, Roberto González ...
By
Cássio Barbosa, Jôneo Lopes do Nascimento, José Luiz Fernandes, Ibrahim de Cerqueira Abud
Search Results for
HSLA steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22 Search Results for
HSLA steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 52 Fatigue striations in a vanadium HSLA steel. (a) L-T orientation; Δ K = 32.3–34.3 MPa m . da / dN = 3.3–3.8 × 10 −5 cm/cycle. (b) T-L orientaton; Δ K = 24.3–25.5 MPa m , da / dN = 9.4–11.2 × 10 −6 cm/cycle. Source: Ref 54
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001816
EISBN: 978-1-62708-241-9
... components superplastic deformation boundary sliding dislocation creep high-strength low alloy steel decohesions traction testing grain size elongation Ti-Nb microalloyed ultrafine-grained steel (UGS steel, general) high-strength low-alloy steel (HSLA steel, general) Introduction A material...
Abstract
This paper describes the superplastic characteristics of shipbuilding steel deformed at 800 °C and a strain rate less than 0.001/s. After the superplastic deformation, the steel presents mixed fractures: by decohesion of the hard (pearlite and carbides) and ductile (ferrite) phases and by intergranular sliding of ferrite/ferrite and ferrite/pearlite, just as it occurs in stage III creep behavior. The behavior is confirmed through the Ashby-Verrall model, according to which the dislocation creep (power-law creep) and diffusion creep (linear-viscous creep) occur simultaneously.
Image
Published: 01 January 2002
Fig. 6 Engineering stress-strain curve for HSLA 60 (API 2Y grade 60T) plate steel. σ y , yield strength; σ u , tensile strength
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0091009
EISBN: 978-1-62708-235-8
... as a result of stress-relief cracking. Very high residual stresses often result from welding thick sections of hardenable steels, even when preheating is employed. Quenched-and-tempered steels containing vanadium, as well as HSLA steels with a vanadium addition, have been shown to be susceptible...
Abstract
A thick-walled tube that was weld fabricated for use as a pressure vessel exhibited cracks. Similar cracking was apparent at the weld toes after postweld stress relief or quench-and-temper heat treatment. The cracks were not detectable by nondestructive examination after welding, immediately prior to heat treatment. Multiple-pass arc welds secured the carbon-steel flanges to the Ni-Cr-Mo-V alloy steel tubes. Investigation (visual inspection, metallographic analysis, and evaluation of the fabrication history and the analysis data) supported the conclusion that the tube failed as a result of stress-relief cracking. Very high residual stresses often result from welding thick sections of hardenable steels, even when preheating is employed. Quenched-and-tempered steels containing vanadium, as well as HSLA steels with a vanadium addition, have been shown to be susceptible to this embrittlement. Manufacturers of susceptible steels recommend use of these materials in the as-welded condition.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001822
EISBN: 978-1-62708-241-9
... Abstract A newly installed pipeline leaked during cleaning prior to hydrotest at a pressure of approximately 400 psig. The intended hydrotest pressure was 750 psig. The pipeline was constructed from spiral-welded API 5L-X65 HSLA steel and was intended for seawater injection. Analysis included...
Abstract
A newly installed pipeline leaked during cleaning prior to hydrotest at a pressure of approximately 400 psig. The intended hydrotest pressure was 750 psig. The pipeline was constructed from spiral-welded API 5L-X65 HSLA steel and was intended for seawater injection. Analysis included nondestructive testing, metallography, and scanning electron microscopy. Based on the results, the failure was attributed to transit fatigue, caused during highway transportation. Cracks along the toes of the weld from both the outside and inside surfaces, the transgranular nature of cracking, and the presence of fatigue striations all supported transit fatigue as the damage mechanism.
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 16 Examples of ductile fracture on shear planes. (a) Void sheets from propagation of a crack between widely spaced inclusions within a shear band in a 4340 steel. Stress axis is vertical. Source: Ref 41 . (b) Ductile crack growth in HSLA steel (A710). Source: Ref 77
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
... that the tempering temperature necessary to reduce the material to the specified hardness at the specified depth was likely within the blue brittleness range of 230 to 370 °C (450 to 750 °F). This embrittlement phenomenon was considered the likely cause of the failures. Case History #3 - HSLA Steel Welding Failure...
Abstract
Hardenability evaluation is typically applied to heat treatment process control, but can also augment standard metallurgical failure analysis techniques for steel components. A comprehensive understanding of steel hardenability is an essential complement to the skills of the metallurgical failure analyst. The empirical information supplied by hardenability analysis can provide additional processing and service insight to the investigator. The intent of this paper is to describe some applications of steel thermal response concepts in failure analysis, and several case studies are included to illustrate these applications.
Image
Published: 01 January 2002
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
... N. : Inclusions and fracture characteristics of HSLA steel forgings , Mater. Sci. Eng. A , 384 , 64 – 69 ( 2004 ) 10.1016/j.msea.2004.05.023 Selected references Selected references • Wulpi D.J. , Failures of Shafts , Failure Analysis and Prevention , Vol 11 , ASM...
Abstract
The shafts on two centrifugal pumps failed during use in a petroleum refinery. Light optical microscopy and scanning electron microscopy were used to analyze the damaged materials to determine the cause of failure. The results showed that one shaft, made of duplex stainless steel, failed by fatigue fracture, and the other, made of 316 austenitic stainless steel, experienced a similar fracture, which was promoted by the presence of nonmetallic inclusion particles.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
... W.K. , Yang B.Y. , Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels . Corros. Sci. 50 , 3336 – 3342 ( 2008 ) 10.1016/j.corsci.2008.09.030 13. Al-Mansour M. , Al-Fantazi A.M. , Sulfide stress cracking resistance of API–X100...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001850
EISBN: 978-1-62708-241-9
... 3. Standard Test Methods for Tension Testing of Metallic Materials . ASTM E8M-03 4. Indian Standard Method for Charpy Impact Test (V-Notch) on Metallic Material . IS 1757 – 1988 5. Al-Hajer K.F. : The grain coarsening and subsequent transformation of austenite in the HSLA...
Abstract
After about a year of uninterrupted service, one of the blow pipes on a blast furnace developed a bulge measuring 300 x 150 x 12 mm. The conical shaped section was removed from the furnace and examined to determine why it failed. The investigation consisted of visual inspection, chemical analysis, microstructural characterization, and mechanical property testing. The pipe was made from nonresulfurized carbon steel as specified and was lined with an alumina refractory. Visual inspection revealed cracks in the refractory lining, which corresponded with the location of the bulge. Microstructural and EDS analysis yielded evidence of overheating, revealing voids, scale, grain boundary oxidation, decarburization, and grain coarsening on the inner surface of the pipe, which also suggest the initiation of creep. Based on the information gathered during the investigation, the blow pipe was exposed to high temperatures when the liner cracked and subsequently bulged out due to creep.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003513
EISBN: 978-1-62708-180-1
... were developed from tension tests on an HSLA 60 steel (API 2Y grade 60T, a plate steel used in offshore welded construction) base metal (showing a yield plateau in Fig. 6 ) and the deposited weld metal (showing a roundhouse in Fig. 6 ) in the same steel. Below an L r of 0.6, there is little...
Abstract
Optimized modeling of fracture-critical structural components and connections requires the application of elastic-plastic fracture mechanics. Such applications, however, can require sophisticated analytical techniques such as crack tip opening displacement (CTOD), failure assessment diagram (FAD), and deformation plasticity failure assessment diagram (DPFAD). This article presents the origin and description of FAD and addresses R6 FAD using J-integral. It details the fracture criteria of BS 7910. The factors to be considered during the use of FAD and the applications of FAD are also reviewed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... be employed for alloy verification, or the results must indicate the potential that various alloys match the chemistry of the part. An example is the overlapping chemistry of the structural carbon steel ASTM A36 and the high-strength, low-alloy steel (HSLA) ASTM A572. The A36 structural steel has chemical...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels. dimpled intergranular fracture hydrogen embrittlement intergranular brittle fracture intergranular fatigue intergranular fracture intergranular stress...
Abstract
This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
.... The microscale fractographic features consist of ruptured dimples, and both diffuse and local necking may be macroscopically visible depending on the component geometry. Mechanical conditions and metallurgical features can influence the appearance of MVC. Examples are shown for a ferritic steel ( Fig. 1a...
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
...) HSLA high-strength low-alloy HTTP high-temperature transformation prod- ucts HV Vickers hardness (diamond pyramid hard- ness) HVOF high-velocity oxyfuel in. inch ICFTA International Committee of Foundry Technical Associations ID inner diameter IF incomplete fusion IG intergranular IGSCC intergranular...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
.... Some specific situations of IG fracture include: High-carbon steels with a pearlitic microstructure Segregated phosphorus and cementite at prior-austenite grain boundaries in the high-carbon-case microstructures of carburized steels Stress-relief cracking Grain-boundary carbide films due...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... of the tensile load. The fracture appearance typically has a dull and fibrous appearance, as in the classic cup-and-cone feature of ductile fracture, along with material necking in the simple cross section of a tensile testing specimen (for example, see Fig. 166 in “Medium-Carbon Steels: Atlas of Fractographs...
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... of a particle Growth from a precracked particle (for example, from prior working operations) Cracking in a matrix of limited ductility in which faceted particles cause stress concentration in the matrix (faceted nitride inclusions in a high-strength, low-alloy, or HSLA, steel) Inclusions tend...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
1